1. The answer is an equation of the form $18 x+6 y-5 z=d$. Substituting $x=-1, y=1$, $z=7$, we get $d=-18+6-35=-47$, so the plane has equation $18 x+6 y-5 z=-47$.
2. $\overrightarrow{A B}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]$ and $\overrightarrow{A C}=\left[\begin{array}{r}8 \\ -5 \\ -1\end{array}\right]$. A normal vector is $\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{rrr}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ 1 & -1 & 0 \\ 8 & -5 & -1\end{array}\right|=1 \mathrm{i}-$ $(-1) \mathrm{j}+3 \mathrm{k}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$. The plane has equation of the form $x+y+3 z=d$. Since the coordinates of A satisfy the equation, we have $-1+2+3=d$, so $d=4$ and the equation is $x+y+3 z=4$.
3. First note that the lines are parallel since the direction of one is a scalar multiple of the direction of the other: $\left[\begin{array}{r}2 \\ -10 \\ -4\end{array}\right]=-2\left[\begin{array}{r}-1 \\ 5 \\ 2\end{array}\right]$. We can conclude that the lines are the same if, in addition, they have a point in common. So we look for a solution to

$$
\begin{aligned}
-1-t & =1+2 s \\
4+5 t & =-6-10 s \\
4+2 t & =-4 s ;
\end{aligned} \quad \text { that is, to } \quad \begin{aligned}
2 s+t & =-2 \\
10 s+5 t & =-10 \\
4 s+2 t & =-4
\end{aligned}
$$

This system is equivalent to $2 s+t=-2$ which has infinitely many solutions; e.g., $t=0, s=-1$. This gives the point $(-1,4,4)$.
4. (a) The line has direction $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and the plane has normal $\left[\begin{array}{r}3 \\ -4 \\ 1\end{array}\right]$. Since the dot product of these vectors is $-2 \neq 0$, they are not perpendicular. Hence the line and plane are not parallel, so they must intersect.
(b) A point (x, y, z) is on the line if $x=2+t, y=-3+2 t, z=-4+3 t$ for some t. Substituting into the equation of the plane gives

$$
3(2+t)-4(-3+2 t)+(-4+3 t)=18=-2 t+14 .
$$

Thus $2 t=-4, t=-2$ and the point of intersection is $(0,-7,-10)$.
5. The projection of u on v is $\operatorname{proj}_{v} u=\frac{u \cdot v}{v \cdot v} v=\frac{32}{77}\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$.

The projection of v on u is $\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{32}{14}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

6 . Let Q be any point on the line, say $Q(1,2,3)$. The line has direction $d=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and the distance we want is the length of $w-p$, where $p=\operatorname{proj}_{d} w$ is the projection of $\mathrm{w}=\overrightarrow{Q P}=\left[\begin{array}{r}-2 \\ 0 \\ -2\end{array}\right]$ on d.

We have

$$
\mathrm{p}=\operatorname{proj}_{\mathrm{d}} \mathrm{w}=\frac{\mathrm{w} \cdot \mathrm{~d}}{\mathrm{~d} \cdot \mathrm{~d}} \mathrm{~d}=-\frac{4}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and

$$
w-p=\left[\begin{array}{r}
-2 \\
0 \\
-2
\end{array}\right]+\frac{4}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{2}{3}\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right]
$$

so the required distance is $\frac{2}{3}\left\|\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]\right\|=\frac{2}{3} \sqrt{6}$.

