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1. The answer is an equation of the form 18x+6y −5z = d. Substituting x = −1, y = 1,

z = 7, we get d = −18+6−35 = −47, so the plane has equation 18x+6y−5z = −47.
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 . The plane has equation of the form x + y + 3z = d. Since the

coordinates of A satisfy the equation, we have −1 + 2 + 3 = d, so d = 4 and the

equation is x +y + 3z = 4.

3. First note that the lines are parallel since the direction of one is a scalar multiple of

the direction of the other:
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 . We can conclude that the lines are the

same if, in addition, they have a point in common. So we look for a solution to

−1− t = 1+ 2s

4+ 5t = −6− 10s

4+ 2t = −4s;

that is, to

2s + t = −2

10s + 5t = −10

4s + 2t = −4

This system is equivalent to 2s + t = −2 which has infinitely many solutions; e.g.,

t = 0, s = −1. This gives the point (−1,4,4).

4. (a) The line has direction
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 and the plane has normal
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 . Since the dot product

of these vectors is −2 6= 0, they are not perpendicular. Hence the line and plane

are not parallel, so they must intersect.

(b) A point (x,y, z) is on the line if x = 2+ t, y = −3+ 2t, z = −4+ 3t for some t.

Substituting into the equation of the plane gives

3(2+ t)− 4(−3+ 2t)+ (−4+ 3t) = 18 = −2t + 14.

Thus 2t = −4, t = −2 and the point of intersection is (0,−7,−10).

5. The projection of u on v is projv u = u · v
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6. Let Q be any point on the line, say Q(1,2,3). The line

has direction d =
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 and the distance we want is the

length of w − p, where p = projd w is the projection of

w = ---------------------------------------→
QP =
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 on d.
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We have

p = projd w = w · d

d · d
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so the required distance is
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