1. We are given $u \cdot u=3^{2}=9$ and $v \cdot v=5^{2}=25$. Thus $(-3 u+4 v) \cdot(2 u+5 v)=$ $-6 u \cdot u-7 u \cdot v+20 v \cdot v=-6(9)-7(8)+20(25)=390$.
2. The length of v is $\|v\|=\sqrt{(-1)^{2}+2^{2}+2^{2}}=3$, so $\frac{1}{3}\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{r}-\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right]$ is a unit vector in the direction of v and $\frac{2}{3}\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{r}-\frac{2}{3} \\ \frac{4}{3} \\ \frac{4}{3}\end{array}\right]$ is a vector of length 2 in the direction of v. The vector $-6\left(\frac{1}{3}\right)\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{r}2 \\ -4 \\ -4\end{array}\right]$ has length 6 and opposite direction.
3. $u \cdot v=-4-3+2=-5,\|u\|=\sqrt{14}$ and $\|v\|=\sqrt{18}$, so $\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}=-\frac{5}{\sqrt{14} \sqrt{18}} \approx$ -.315 . Thus $\theta=\arccos (-.315) \approx 1.89$ rads $\approx 108^{\circ}$.
4. We wish to find k so that the dot product of u and $u+k v=\left[\begin{array}{c}1+2 k \\ k \\ -1\end{array}\right]$ is 0 . Since $\mathbf{u} \cdot(\mathbf{u}+k \mathbf{v})=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}1+2 k \\ k \\ -1\end{array}\right]=1+2 k+1$, we find $k=-1$.
5. The picture at the right shows the approximate position of the points. There is only one possible location for D. Let D have coordinates (x, y). Since $\overrightarrow{C A}=\left[\begin{array}{r}-3 \\ 4\end{array}\right]=\overrightarrow{D B}$, we need $\left[\begin{array}{r}-3 \\ 4\end{array}\right]=\left[\begin{array}{l}-3-x \\ -1-y\end{array}\right],-3-x=-3$ and $4=-1-y$. Thus $x=0, y=-5$ and D is $(0,-5)$.

Since $\overrightarrow{C A} \cdot \overrightarrow{D C}=\left[\begin{array}{r}-3 \\ 4\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 3\end{array}\right]=0$, there is a right angle at C and since $\overrightarrow{C A} \cdot \overrightarrow{B A}=$ $\left[\begin{array}{r}-3 \\ 4\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 3\end{array}\right]=0$, there is a right angle at A. Thus $A B D C$ is a rectangle and since $\|\overrightarrow{B A}\|=\|\overrightarrow{A C}\|=5$, the rectangle is a square.
6. Since $\mathbf{u} \times \mathbf{v}=\left[\begin{array}{c}u_{2} v_{3}-u_{3} v_{2} \\ -\left(u_{1} v_{3}-v_{1} u_{3}\right) \\ u_{1} v_{2}-u_{2} v_{1}\end{array}\right]$, we have $(u \times v) \cdot \mathbf{u}$

$$
\begin{aligned}
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) u_{1}-\left(u_{1} v_{3}-v_{1} u_{3}\right) u_{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right) u_{3} \\
& =u_{2} v_{3} u_{1}-u_{3} v_{2} u_{1}-u_{1} v_{3} u_{2}+v_{1} u_{3} u_{2}+u_{1} v_{2} u_{3}-u_{2} v_{1} u_{3}=0 .
\end{aligned}
$$

7. $a \mathbf{u}+b \mathbf{v}=\left[\begin{array}{c}3 a+4 b \\ 2 a-b \\ a-b\end{array}\right]$. A normal is

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
3 & 2 & 1 \\
4 & -1 & -1
\end{array}\right|=\left|\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
3 & 1 \\
4 & -1
\end{array}\right|+\left|\begin{array}{rr}
3 & 2 \\
4 & -1
\end{array}\right| \\
& =-1 \mathbf{i}-(-7) \mathbf{j}+(-11) \mathbf{k}=\left[\begin{array}{r}
-1 \\
7 \\
-11
\end{array}\right] .
\end{aligned}
$$

The vector $\left[\begin{array}{r}-1 \\ 7 \\ -11\end{array}\right]$ is a normal. Since the plane in question passes through $(0,0,0)$, an equation is $-x+7 y-11 z=0$.

