1. i. The system is $A \mathrm{x}=\mathrm{b}$ with $A=\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right], \mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, and $\mathrm{b}=\left[\begin{array}{r}8 \\ 5 \\ -7\end{array}\right]$.
ii. We have $[A \mid I]=\left[\begin{array}{rrr|rrr}0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{rrr|rrr}1 & 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & -1 & 1\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 3 & -2 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -2 & 2 & -1 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 3 & -2 & 1 & 0 \\ 0 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & \frac{1}{2} & -\frac{1}{2}\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}1 & 0 & 0 & 1 & -\frac{1}{2} & \frac{3}{2} \\ 0 & 1 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & -1 & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$,
so $A^{-1}=\frac{1}{2}\left[\begin{array}{rrr}2 & -1 & 3 \\ 0 & 1 & -1 \\ -2 & 1 & -1\end{array}\right]$ and $\mathrm{x}=A^{-1} \mathrm{~b}=\frac{1}{2}\left[\begin{array}{rrr}2 & -1 & 3 \\ 0 & 1 & -1 \\ -2 & 1 & -1\end{array}\right]\left[\begin{array}{r}8 \\ 5 \\ -7\end{array}\right]=\left[\begin{array}{r}-5 \\ 6 \\ -2\end{array}\right]$.
iii. The given vectors are the columns of A, so $A x$ is a linear combination of these vectors-recall 2.1.33. We have just shown that $A\left[\begin{array}{r}-5 \\ 6 \\ -2\end{array}\right]=\left[\begin{array}{r}8 \\ 5 \\ -7\end{array}\right]$, so

$$
\left[\begin{array}{r}
8 \\
5 \\
-7
\end{array}\right]=-5\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+6\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]-2\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right] .
$$

2. $A=\left[\begin{array}{rrr}0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & -5 & 2\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & -5 & 2 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]=E_{1} A \rightarrow\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right]=E_{2} E_{1} A$
$\rightarrow\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=E_{3} E_{2} E_{1} A \rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=E_{4} E_{3} E_{2} E_{1} A=I$
where $E_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right], E_{4}=\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Since $\left(E_{4} E_{3} E_{2} E_{1}\right) A=I, A=\left(E_{4} E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}$; which is

$$
\left[\begin{array}{rrr}
0 & -2 & 1 \\
0 & 1 & 0 \\
1 & -5 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -5 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

3. (a) $M=\left[\begin{array}{rrr}19 & -10 & -6 \\ 14 & -11 & -2 \\ -2 & -5 & -3\end{array}\right], C=\left[\begin{array}{rrr}19 & 10 & -6 \\ -14 & -11 & 2 \\ -2 & 5 & -3\end{array}\right]$,

$$
A C^{T}=\left[\begin{array}{rrr}
-1 & 2 & 4 \\
0 & 3 & 5 \\
2 & -2 & 3
\end{array}\right]\left[\begin{array}{rrr}
19 & -14 & -2 \\
10 & -11 & 5 \\
-6 & 2 & -3
\end{array}\right]=\left[\begin{array}{rrr}
-23 & 0 & 0 \\
0 & -23 & 0 \\
0 & 0 & -23
\end{array}\right] .
$$

(b) $\operatorname{det} A=-23$
(c) $A^{-1}=-\frac{1}{23}\left[\begin{array}{rrr}19 & -14 & -2 \\ 10 & -11 & 5 \\ -6 & 2 & -3\end{array}\right]$.
4. Since $C=\left[\begin{array}{rr}3 & 1 \\ -2 & 1\end{array}\right], C^{T}=\left[\begin{array}{rr}3 & -2 \\ 1 & 1\end{array}\right]$, so $A^{-1}=\frac{1}{\operatorname{det} A} C^{T}=\frac{1}{5}\left[\begin{array}{rr}3 & -2 \\ 1 & 1\end{array}\right]$. Thus $A=\left(A^{-1}\right)^{-1}=\left[\begin{array}{rr}\frac{3}{5} & -\frac{2}{5} \\ \frac{1}{5} & \frac{1}{5}\end{array}\right]^{-1}=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$.
5. Expanding by cofactors of the second column gives

$$
\operatorname{det} A=\left|\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right|+\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|+\left|\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right|=7-1-5=1 .
$$

6. $\operatorname{det} A^{T} B^{-1} A^{3}(-B)=\left(\operatorname{det} A^{T}\right)\left(\operatorname{det} B^{-1}\right)\left(\operatorname{det} A^{3}\right)(\operatorname{det}-B)=(\operatorname{det} A) \frac{1}{\operatorname{det} B}(\operatorname{det} A)^{3}(-\operatorname{det} B)=$ (2) $\frac{-1}{5}(8)(5)=-16$.
7. (a) We compute det B using the Laplace expansion down the third column.

$$
\operatorname{det} B=\left|\begin{array}{rr}
3 & -2 \\
-1 & 4
\end{array}\right|+\left|\begin{array}{rr}
1 & 2 \\
3 & -2
\end{array}\right|=10+(-8)=2 .
$$

Now we obtain (easily) that $\operatorname{det} \frac{1}{3} B=\left(\frac{1}{3}\right)^{3} \operatorname{det} B=\frac{2}{27}$ and $\operatorname{det} B^{-1}=\frac{1}{\operatorname{det} B}=\frac{1}{2}$.
(b) Let C be the cofactor matrix. We have $B=A^{-1}=\frac{1}{\operatorname{det} A} C^{T}$, so $C^{T}=(\operatorname{det} A) B$. Now $\operatorname{det} A=\frac{1}{\operatorname{det} A^{-1}}=\frac{1}{\operatorname{det} B}=\frac{1}{2}$. Thus $C^{T}=(\operatorname{det} A) B$

$$
=\frac{1}{2}\left[\begin{array}{rrr}
1 & 2 & 1 \\
3 & -2 & 0 \\
-1 & 4 & 1
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{3}{2} & -1 & 0 \\
-\frac{1}{2} & 2 & \frac{1}{2}
\end{array}\right] \text { and } C=\left(C^{T}\right)^{T}=\left[\begin{array}{rrr}
\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\
1 & -1 & 2 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

8. $\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 1 \\ 2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 1 & 0 & 1 & 0\end{array}\right|=\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 5 & 0 & 0 & -10 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 1 & 0 & 1 & 0\end{array}\right|=5\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 1 & 0 & 1 & 0\end{array}\right|$
$=-5\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 1 & 0 & 1 & 0\end{array}\right|=-5\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 1 & 2\end{array}\right|$
$=-5\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -4 & -1 \\ 0 & 0 & 0 & 1 & 2\end{array}\right|=-5\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -4 & -1 \\ 0 & 0 & 0 & 0 & \frac{7}{4}\end{array}\right|=-5(-4)\left(\frac{7}{4}\right)=35$.
9. $\left|\begin{array}{ccc}2 p & -a+u & 3 u \\ 2 q & -b+v & 3 v \\ 2 r & -c+w & 3 w\end{array}\right|=\left|\begin{array}{ccc}2 p & 2 q & 2 r \\ -a+u & -b+v & -c+w \\ 3 u & 3 v & 3 w\end{array}\right|$
$=2(3)\left|\begin{array}{ccc}p & q & r \\ -a+u & -b+v & -c+w \\ u & v & w\end{array}\right|=6\left|\begin{array}{ccc}p & q & r \\ -a & -b & -c \\ u & v & w\end{array}\right|=-6\left|\begin{array}{ccc}p & q & r \\ a & b & c \\ u & v & w\end{array}\right|$ $=-(-6)\left|\begin{array}{lll}a & b & c \\ p & q & r \\ u & v & w\end{array}\right|=6(5)=30$.
10. v_{1} is not an eigenvector: an eigenvector is, by definition, not zero.
$A \mathrm{v}_{2}=\left[\begin{array}{l}5 \\ 4 \\ 4\end{array}\right]$ is not $\lambda \mathrm{v}_{2}$ for any scalar λ, so v_{2} is not an eigenvector.
$A \mathrm{v}_{3}=\mathrm{v}_{3}$, so v_{3} is an eigenvector of A.
$A \mathrm{v}_{4}=-2 \mathrm{v}_{4}$, so v_{4} is an eigenvector of A.
$A \mathrm{v}_{5}=5 \mathrm{v}_{5}$, so v_{5} is an eigenvector of A.
$A v_{6}=\left[\begin{array}{c}12 \\ 8 \\ 6\end{array}\right]$ is not $\lambda \mathrm{v}_{6}$ for any scalar λ, so v_{6} is not an eigenvector.
11. (a) The characteristic polynomial of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$ is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda-4=(\lambda+1)(\lambda-4) .
$$

The eigenvalues of A are -1 and 4 . To find the eigenspace for $\lambda=-1$, we solve the homogeneous system $(A-\lambda I) \mathrm{x}=0$ for $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. With $\lambda=-1$, we have

$$
A-\lambda I=\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

The solutions are $x_{2}=t, x_{1}=-t$. The corresponding eigenspace consists of vectors of the form $\left[\begin{array}{r}-t \\ t\end{array}\right]=t\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
To find the eigenspace for $\lambda=4$, we solve the homogeneous system $(A-\lambda I) \mathrm{x}=0$ for $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. With $\lambda=4$, we have

$$
A-\lambda I=\left[\begin{array}{rr}
-3 & 2 \\
3 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rr}
-1 & \frac{2}{3} \\
0 & 0
\end{array}\right]
$$

The solutions are $x_{2}=t, x_{1}=\frac{2}{3} t$. The corresponding eigenspace consists of vectors of the form $\left[\begin{array}{c}\frac{2}{3} t \\ t\end{array}\right]=t\left[\begin{array}{l}\frac{2}{3} \\ 1\end{array}\right]=s\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(b) The characteristic polynomial of $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]$ is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & -2 & 3 \\
2 & 6-\lambda & -6 \\
1 & 2 & -1-\lambda
\end{array}\right|=-\lambda^{3}+6 \lambda^{2}-12 \lambda-8=-(\lambda-2)^{3} .
$$

The only eigenvalue of A is $\lambda=2$. To find the corresponding eigenspace, we solve the homogeneous system $(A-\lambda I) \mathrm{x}=0$ for $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ with $\lambda=2$. We have

$$
A-\lambda I=\left[\begin{array}{rrr}
-1 & -2 & 3 \\
2 & 4 & -6 \\
1 & 2 & -3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
-1 & -2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The solutions are $x_{3}=t, x_{2}=s, x_{1}=-2 s+3 t$. The eigenspace consists of vectors of the form $\left[\begin{array}{c}-2 s+3 t \\ s \\ t\end{array}\right]=s\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$.
12. We are given $A \mathrm{x}=\lambda \mathrm{x}$ with $\mathrm{x} \neq 0$. Since A is invertible, $A \mathrm{x} \neq 0$, so $\lambda \neq 0$. Multiplying $A \mathrm{x}=\lambda \mathrm{x}$ by A^{-1} gives $\mathrm{x}=\lambda A^{-1} \mathrm{x}$, so $A^{-1} \mathrm{x}=\frac{1}{\lambda} \mathrm{x}$. Thus x is also an eigenvector of A^{-1}, and with eigenvalue $\frac{1}{\lambda}$.

