MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Final Examination	Mathematics 2050	
Solutions	Drs. Bahturin, Goodaire and Zhao	Fall 2003

Time: 2 hours.

All answers should be justified using good English.

1. Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -3 \\ 0 \\ 5 \end{bmatrix}$.

- [2] (a) Find 5u 3v.
 - (b) Find $\mathbf{u} \cdot \mathbf{v}$.
 - (c) Find ||u + v||.
 - (d) Find the exact value of the cosine of the angle between u and v.[Most calculators do not give exact answers.]

Solution.

(a)
$$5\mathbf{u} - 3\mathbf{v} = 5\begin{bmatrix} 1\\2\\3 \end{bmatrix} - 3\begin{bmatrix} -3\\0\\5 \end{bmatrix} = \begin{bmatrix} 14\\10\\0 \end{bmatrix}$$
.
(b) $\mathbf{u} \cdot \mathbf{v} = 1(-3) + 2(0) + 3(5) = 12$.
(c) $\mathbf{u} + \mathbf{v} = \begin{bmatrix} -2\\2\\8 \end{bmatrix}$, so $\|\mathbf{u} + \mathbf{v}\| = \sqrt{(-2)^2 + 2^2 + 8^2} = 6\sqrt{2}$.
(d) $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{12}{\sqrt{14}\sqrt{34}} = \frac{6}{\sqrt{119}}$.

- [3] 2. (a) Find the equation of the line ℓ through A(1, 2, 3) and parallel to $u = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$.
- [6]

[2]

[3]

[3]

(b) Find all points *B* on ℓ such that \overrightarrow{AB} is a unit vector.

- (a) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$. (b) Let B = (x, y, z) Since B is on ℓ , $\overrightarrow{AB} = \begin{bmatrix} x - 1 \\ y - 2 \\ z - 3 \end{bmatrix} = \begin{bmatrix} -t \\ t \\ 2t \end{bmatrix}$. We wish $\|\overrightarrow{AB}\| = 1$. Thus $\sqrt{(-t)^2 + t^2 + (2t)^2} = 1$, so $6t^2 = 1$, $t^2 = \frac{1}{6}$ and $t = \pm \frac{1}{\sqrt{6}}$. There are two points: $B_1 = (1 - \frac{\sqrt{6}}{6}, 2 + \frac{\sqrt{6}}{6}, 3 + \frac{2\sqrt{6}}{6})$ and $B_2 = (1 + \frac{\sqrt{6}}{6}, 2 - \frac{\sqrt{6}}{6}, 3 - \frac{2\sqrt{6}}{6})$.
- [6] 3. (a) Find the equation of the plane π through A(-2, -1, 1), B(-1, 1, 2), C(0, 1, 3).
 - (b) Find the distance from D(2, 2, -1) to π .

[4]

(a) A normal n to
$$\pi$$
 is $\overrightarrow{AB} \times \overrightarrow{AC}$. Since $\overrightarrow{AB} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$ and $\overrightarrow{AC} = \begin{bmatrix} 2\\ 2\\ 2 \end{bmatrix}$

$$n = \begin{vmatrix} i & j & k\\ 1 & 2 & 1\\ 2 & 2 & 2 \end{vmatrix} = 2 \begin{vmatrix} i & j & k\\ 1 & 2 & 1\\ 1 & 1 & 1 \end{vmatrix} = 2(i - k) = 2\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$$
.
The vector $\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$ is also a normal, so the plane has equation of the form $x - z = d$.
Since *A* is on the plane, $x - z = -3$.
(b) The required distance is the length of the projection
p of w = \overrightarrow{DA} on the normal n = $\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$. Since, w =
 $\begin{bmatrix} -4\\ -3\\ 2 \end{bmatrix}$, $\operatorname{proj}_{n} w = \frac{w \cdot n}{n \cdot n} n = -3n$. The required distance
is $3||n|| = 3\sqrt{2}$.

[5] 4. Suppose u, v, and w are linearly dependent vectors in \mathbb{R}^n . Prove that $\sqrt{2}u$, -v, and $\frac{1}{3}w$ are also linearly dependent.

that $c_1 u + c_2 v + c_3 w = 0$. Thus,

Solution. Since u, v, w are linearly dependent, there are scalars c_1 , c_2 , c_3 , not all 0, such

$$\frac{c_1}{\sqrt{2}}(\sqrt{2}u) + (-c_2)(-v) + (3c_3)(\frac{1}{3}w) = 0.$$

Since not all the coefficients here, $\frac{c_1}{\sqrt{2}}$, $-c_2$, $3c_3$ are 0, the vectors $\sqrt{2}u$, -v, $\frac{1}{3}w$ are linearly dependent.

[6] 5. (a) Solve the system

expressing the solution as a vector which is the sum of a particular solution x_p to (*) and a solution x_h of the corresponding homogeneous system. Identify x_p and x_h .

[3] (b) Write $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as a linear combination of the columns of $A = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 2 & 0 & 3 & 1 \end{bmatrix}$ using specific coefficients.

Solution.

(a) The system is $A\mathbf{x} = \mathbf{b}$ with $A = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 2 & 0 & 3 & 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Gaussian

elimination on the augmented matrix is very easy

$$[A|b] = \begin{bmatrix} 0 & 1 & 1 & -1 & | & 1 \\ 2 & 0 & 3 & 1 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 & 1 & | & 2 \\ 0 & 1 & 1 & -1 & | & 1 \end{bmatrix}.$$

We have $x_3 = t$ and $x_4 = s$ free. Back substitution gives $x_2 = 1 - x_3 + x_4 = 1 - t + s$ and $2x_1 = 2 - 3x_3 - x_4 = 2 - 3t - s$, so $x_1 = 1 - \frac{3}{2}t - \frac{1}{2}s$. The solution is

$$\mathbf{x} = \begin{bmatrix} 1 - \frac{3}{2}t - \frac{1}{2}s \\ 2 - 3t - s \\ t \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{3}{2} \\ -1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \\ 1 \end{bmatrix},$$

which is $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$ with $\mathbf{x}_p = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$ a particular solution and $\mathbf{x}_h = t \begin{bmatrix} -\frac{3}{2}\\-1\\1\\0 \end{bmatrix} + s \begin{bmatrix} -\frac{1}{2}\\1\\0\\1 \end{bmatrix}$ a

solution of the corresponding homogeneous system.

(b) Part (a) tells us that
$$A\begin{bmatrix} 1\\1\\0\\0\end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$$
, so $\begin{bmatrix} 1\\2 \end{bmatrix} = 1\begin{bmatrix} 0\\2 \end{bmatrix} + 1\begin{bmatrix} 1\\0 \end{bmatrix} + 0\begin{bmatrix} 1\\3 \end{bmatrix} + 0\begin{bmatrix} -1\\1 \end{bmatrix}$.

- [2] (a) A + 2C
- [2] (b) $(AB)^T$
- [2] (c) $B^T A^T$
- [2] (d) AC + B

(a)
$$A + 2C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} -2 & 0 & 2 \\ 4 & 2 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 5 \\ 8 & 7 & 6 \end{bmatrix}.$$

(b) Since $AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & 0 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ 7 & 26 \end{bmatrix}, (AB)^T = \begin{bmatrix} 4 & 7 \\ 11 & 26 \end{bmatrix}.$
(c) $B^T A^T = (AB)^T = \begin{bmatrix} 4 & 7 \\ 11 & 26 \end{bmatrix}.$

(d) AC + B is not defined since the matrix product AC is not defined; A is 2×3 , so C should be $3 \times n$, but C is 2×3 .

[6] 7. Find an LU decomposition of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

Solution.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \xrightarrow{R_2 \to R_2 - 4(R_1)}_{R_3 \to R_3 - 7(R_1)} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 2(R_2)} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix} = U$$

with $L = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}$, the matrix that records the multipliers.

[6] 8. Write $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ as the product of elementary matrices.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} = E_1 A \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = E_2(E_1 A) \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E_3(E_2 E_1 A)$$

with $E_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$, $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$. Since $(E_3 E_2 E_1)A = I$,
 $A = (E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.
[A different sequence of row operations leads to $A = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$.]

[6] 9. Given 4×4 matrices *X*, *Y*, *Z*, with *Y* invertible, express det $(-2X^TY^{-1}Z^2)$ in terms of det *X*, det *Y*, and det *Z*.

Solution.
$$\det(-2X^TY^{-1}Z^2) = (-2)^4 \det X \frac{1}{\det Y} (\det Z)^2 = \frac{16 \det X (\det Z)^2}{\det Y}.$$

[6] 10. (a) Find the inverse of
$$A = \begin{bmatrix} 1 & 3 & 1 \\ -2 & -5 & -2 \\ 3 & 14 & 4 \end{bmatrix}$$
.

[4] (b) Use your answer to (a) to solve the system $\begin{array}{rrrr} x_1 + & 3x_2 + & x_3 &= & 1 \\ -2x_1 - & 5x_2 - 2x_3 &= & 1 \\ & 3x_1 + & 14x_2 + & 4x_3 &= & 1. \end{array}$

Solution.

(a)
$$[A|I] = \begin{bmatrix} 1 & 3 & 1 & | & 1 & 0 & 0 \\ -2 & -5 & -2 & | & 0 & 1 & 0 \\ 3 & 14 & 4 & | & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 5 & 1 & | & -3 & 0 & 1 \end{bmatrix}$$

 $\rightarrow \begin{bmatrix} 1 & 0 & 1 & | & -5 & -3 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 0 & 1 & | & -13 & -5 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 8 & 2 & -1 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 0 & 0 & 1 & | & -13 & -5 & 1 \end{bmatrix}.$
Thus $A^{-1} = \begin{bmatrix} 8 & 2 & -1 \\ 2 & 1 & 0 \\ -13 & -5 & 1 \end{bmatrix}.$
(b) The system is $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, so the solution is
 $\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 8 & 2 & -1 \\ 2 & 1 & 0 \\ -13 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \\ -17 \end{bmatrix}.$

[6] 11. Find the determinant of
$$A = \begin{bmatrix} 0 & 2 & 1 & 1 \\ 1 & 2 & -1 & -2 \\ -1 & -4 & 3 & 1 \\ 1 & 6 & 4 & 2 \end{bmatrix}$$
 by reducing to a triangular matrix.

$$\begin{vmatrix} 0 & 2 & 1 & 1 \\ 1 & 2 & -1 & -2 \\ -1 & -4 & 3 & 1 \\ 1 & 6 & 4 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -1 & -2 \\ 0 & 2 & 1 & 1 \\ -1 & -4 & 3 & 1 \\ 1 & 6 & 4 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -1 & -2 \\ 0 & 2 & 1 & 1 \\ 0 & -2 & 2 & -1 \\ 0 & 4 & 5 & 4 \end{vmatrix}$$
$$= - \begin{vmatrix} 1 & 2 & -1 & -2 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 3 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -1 & -2 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix} = -12.$$

[3] 12. (a) Define the term *similar matrices*.

Now let $A = \begin{bmatrix} -2 & -4 \\ 3 & 6 \end{bmatrix}$.

[5] (b) Find the characteristic polynomial of *A* and use this to explain why *A* is similar to a diagonal matrix.

[5] (c) Find a diagonal matrix *D* and an invertible matrix *P* such that $P^{-1}AP = D$.

[2] (d) Find a diagonal matrix *D* and an invertible matrix *S* such that $S^{-1}DS = A$.

Solution.

- (a) Matrices *A* and *B* are *similar* if there exists an invertible matrix *P* such that $B = P^{-1}AP$.
- (b) The characteristic polynomial of *A* is

$$\det(A - \lambda I) = \begin{vmatrix} -2 - \lambda & -4 \\ 3 & 6 - \lambda \end{vmatrix} = -(2 + \lambda)(6 - \lambda) + 12 = \lambda^2 - 4\lambda = \lambda(\lambda - 4).$$

Since the eigenvalues, $\lambda = 0, 4$ are distinct, *A* is similar to a diagonal matrix.

(c) To find the eigenspace for $\lambda = 0$, we solve the system $(A - \lambda I)\mathbf{x} = \mathbf{0}$ with $\lambda = 0$ and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$. We have

$$A \to \left[\begin{array}{cc} 1 & 2 \\ 0 & 0 \end{array} \right]$$

so y = t is free, x = -2y = -2t and $x = t \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. To find the eigenspace for $\lambda = 4$, we solve the system $(A - \lambda I)x = 0$ with $\lambda = 4$ and $x = \begin{bmatrix} x \\ y \end{bmatrix}$. We have

$$A - 4I = \begin{bmatrix} -6 & -4 \\ 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix}$$

so y = t is free, 3x = -2y = -2t, $x = -\frac{2}{3}t$ and $x = t\begin{bmatrix} -\frac{2}{3}\\ 1 \end{bmatrix}$. The vectors $\begin{bmatrix} -2\\ 1 \end{bmatrix}$ and $\begin{bmatrix} -2\\ 3 \end{bmatrix}$ are eigenvectors for 0 and 4, respectively. Putting these into the columns of a matrix $P = \begin{bmatrix} -2 & -2\\ 1 & 3 \end{bmatrix}$, we have $P^{-1}AP = D = \begin{bmatrix} 0 & 0\\ 0 & 4 \end{bmatrix}$, the diagonal matrix whose diagonal entries correspond, in order, to the eigenvectors which are the columns of *P*. (d) Since $P^{-1}AP = D$, $A = PDP^{-1}$, so take $S = P^{-1} = \frac{1}{4}\begin{bmatrix} -3 & -2\\ 1 & 2 \end{bmatrix}$.

[100]