MEMORIAL UNIVERSITY OF NEWFOUNDLAND

Time: 2 hours.
All answers should be justified using good English.

1. Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{r}-3 \\ 0 \\ 5\end{array}\right]$.
(a) Find $5 u-3 v$.
(b) Find $u \cdot v$.
(c) Find $\|u+v\|$.
(d) Find the exact value of the cosine of the angle between u and v. [Most calculators do not give exact answers.]

Solution.

(a) $5 u-3 v=5\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-3\left[\begin{array}{r}-3 \\ 0 \\ 5\end{array}\right]=\left[\begin{array}{c}14 \\ 10 \\ 0\end{array}\right]$.
(b) $u \cdot v=1(-3)+2(0)+3(5)=12$.
(c) $u+v=\left[\begin{array}{r}-2 \\ 2 \\ 8\end{array}\right]$, so $\|u+v\|=\sqrt{(-2)^{2}+2^{2}+8^{2}}=6 \sqrt{2}$.
(d) $\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}=\frac{12}{\sqrt{14} \sqrt{34}}=\frac{6}{\sqrt{119}}$.
2. (a) Find the equation of the line ℓ through $A(1,2,3)$ and parallel to $u=\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right]$.
(b) Find all points B on ℓ such that $\overrightarrow{A B}$ is a unit vector.

Solution.

(a) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+t\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right]$.
(b) Let $B=(x, y, z)$ Since B is on $\ell, \overrightarrow{A B}=\left[\begin{array}{l}x-1 \\ y-2 \\ z-3\end{array}\right]=\left[\begin{array}{r}-t \\ t \\ 2 t\end{array}\right]$. We wish $\|\overrightarrow{A B}\|=1$. Thus $\sqrt{(-t)^{2}+t^{2}+(2 t)^{2}}=1$, so $6 t^{2}=1, t^{2}=\frac{1}{6}$ and $t= \pm \frac{1}{\sqrt{6}}$. There are two points: $B_{1}=\left(1-\frac{\sqrt{6}}{6}, 2+\frac{\sqrt{6}}{6}, 3+\frac{2 \sqrt{6}}{6}\right)$ and $B_{2}=\left(1+\frac{\sqrt{6}}{6}, 2-\frac{\sqrt{6}}{6}, 3-\frac{2 \sqrt{6}}{6}\right)$.
[6] 3. (a) Find the equation of the plane π through $A(-2,-1,1), B(-1,1,2), C(0,1,3)$.
(b) Find the distance from $D(2,2,-1)$ to π.

Solution.

(a) A normal n to π is $\overrightarrow{A B} \times \overrightarrow{A C}$. Since $\overrightarrow{A B}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\overrightarrow{A C}=\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$

$$
\mathrm{n}=\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
2 & 2 & 2
\end{array}\right|=2\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right|=2(\mathbf{i}-\mathrm{k})=2\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right] .
$$

The vector $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$ is also a normal, so the plane has equation of the form $x-z=d$. Since A is on the plane, $x-z=-3$.
(b)

The required distance is the length of the projection p of $\mathrm{w}=\overrightarrow{D A}$ on the normal $\mathrm{n}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$. Since, $\mathrm{w}=$ $\left[\begin{array}{r}-4 \\ -3 \\ 2\end{array}\right], \operatorname{proj}_{\mathrm{n}} w=\frac{\mathrm{w} \cdot \mathrm{n}}{\mathrm{n} \cdot \mathrm{n}} \mathrm{n}=-3 \mathrm{n}$. The required distance
 is $3\|\mathrm{n}\|=3 \sqrt{2}$.
[5] 4. Suppose u, v, and w are linearly dependent vectors in R^{n}. Prove that $\sqrt{2} u,-v$, and $\frac{1}{3} w$ are also linearly dependent.

Solution. Since $\mathbf{u}, \mathrm{v}, \mathrm{w}$ are linearly dependent, there are scalars c_{1}, c_{2}, c_{3}, not all 0 , such that $c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}=0$. Thus,

$$
\frac{c_{1}}{\sqrt{2}}(\sqrt{2} \mathbf{u})+\left(-c_{2}\right)(-\mathbf{v})+\left(3 c_{3}\right)\left(\frac{1}{3} \mathbf{w}\right)=0 .
$$

Since not all the coefficients here, $\frac{c_{1}}{\sqrt{2}},-c_{2}, 3 c_{3}$ are 0 , the vectors $\sqrt{2} u,-v, \frac{1}{3} w$ are linearly dependent.
[6] 5. (a) Solve the system

$$
\begin{align*}
& x_{2}+x_{3}-x_{4}=1 \\
& 2 x_{1}+3 x_{3}+x_{4}=2 \tag{*}
\end{align*}
$$

expressing the solution as a vector which is the sum of a particular solution x_{p} to (*) and a solution x_{h} of the corresponding homogeneous system. Identify x_{p} and x_{h}.
(b) Write $\mathbf{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ as a linear combination of the columns of $A=\left[\begin{array}{rrrr}0 & 1 & 1 & -1 \\ 2 & 0 & 3 & 1\end{array}\right]$ using specific coefficients.

Solution.

(a) The system is $A \mathrm{x}=\mathrm{b}$ with $A=\left[\begin{array}{rrrr}0 & 1 & 1 & -1 \\ 2 & 0 & 3 & 1\end{array}\right], \mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ and $\mathrm{b}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Gaussian elimination on the augmented matrix is very easy:

$$
[A \mid \mathrm{b}]=\left[\begin{array}{rrrr|r}
0 & 1 & 1 & -1 & 1 \\
2 & 0 & 3 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
2 & 0 & 3 & 1 & 2 \\
0 & 1 & 1 & -1 & 1
\end{array}\right] .
$$

We have $x_{3}=t$ and $x_{4}=s$ free. Back substitution gives $x_{2}=1-x_{3}+x_{4}=1-t+s$ and $2 x_{1}=2-3 x_{3}-x_{4}=2-3 t-s$, so $x_{1}=1-\frac{3}{2} t-\frac{1}{2} s$. The solution is

$$
\mathrm{x}=\left[\begin{array}{c}
1-\frac{3}{2} t-\frac{1}{2} s \\
2-3 t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
-\frac{3}{2} \\
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-\frac{1}{2} \\
1 \\
0 \\
1
\end{array}\right],
$$

which is $\mathrm{x}=\mathrm{x}_{p}+\mathrm{x}_{h}$ with $\mathrm{x}_{p}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ a particular solution and $\mathrm{x}_{h}=t\left[\begin{array}{r}-\frac{3}{2} \\ -1 \\ 1 \\ 0\end{array}\right]+s\left[\begin{array}{r}-\frac{1}{2} \\ 1 \\ 0 \\ 1\end{array}\right] \mathrm{a}$ solution of the corresponding homogeneous system.
(b) Part (a) tells us that $A\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, so $\left[\begin{array}{l}1 \\ 2\end{array}\right]=1\left[\begin{array}{l}0 \\ 2\end{array}\right]+1\left[\begin{array}{l}1 \\ 0\end{array}\right]+0\left[\begin{array}{l}1 \\ 3\end{array}\right]+0\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.
6. Given $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], B=\left[\begin{array}{rr}-1 & 2 \\ 1 & 0 \\ 1 & 3\end{array}\right]$, and $C=\left[\begin{array}{rrr}-1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$, find each of the following, if possible. If not possible, explain why not.
[2]
(a) $A+2 C$
(b) $(A B)^{T}$
(c) $B^{T} A^{T}$
(d) $A C+B$

Solution.

(a) $A+2 C=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]+\left[\begin{array}{rrr}-2 & 0 & 2 \\ 4 & 2 & 0\end{array}\right]=\left[\begin{array}{rrr}-1 & 2 & 5 \\ 8 & 7 & 6\end{array}\right]$.
(b) Since $A B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]\left[\begin{array}{rr}-1 & 2 \\ 1 & 0 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}4 & 11 \\ 7 & 26\end{array}\right],(A B)^{T}=\left[\begin{array}{cc}4 & 7 \\ 11 & 26\end{array}\right]$.
(c) $B^{T} A^{T}=(A B)^{T}=\left[\begin{array}{cc}4 & 7 \\ 11 & 26\end{array}\right]$.
(d) $A C+B$ is not defined since the matrix product $A C$ is not defined; A is 2×3, so C should be $3 \times n$, but C is 2×3.
[6] 7. Find an LU decomposition of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.
Solution.

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \xrightarrow{\substack{R 2 \rightarrow R 2-4(R 1) \\
R 3 \rightarrow R 3-7(R 1)}}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right] \xrightarrow{R 3 \rightarrow R 3-2(R 2)}\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 0
\end{array}\right]=U
$$

with $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1\end{array}\right]$, the matrix that records the multipliers.
[6] 8. Write $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ as the product of elementary matrices.

Solution.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rr}
1 & 2 \\
0 & -2
\end{array}\right]=E_{1} A \rightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=E_{2}\left(E_{1} A\right) \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=E_{3}\left(E_{2} E_{1} A\right)
$$

with $E_{1}=\left[\begin{array}{rr}1 & 0 \\ -3 & 1\end{array}\right], E_{2}=\left[\begin{array}{rr}1 & 0 \\ 0 & -\frac{1}{2}\end{array}\right], E_{3}=\left[\begin{array}{rr}1 & -2 \\ 0 & 1\end{array}\right]$. Since $\left(E_{3} E_{2} E_{1}\right) A=I$,

$$
A=\left(E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] .
$$

[A different sequence of row operations leads to $A=\left[\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$.]
[6] 9. Given 4×4 matrices X, Y, Z, with Y invertible, express $\operatorname{det}\left(-2 X^{T} Y^{-1} Z^{2}\right)$ in terms of $\operatorname{det} X$, $\operatorname{det} Y$, and $\operatorname{det} Z$.
Solution. $\operatorname{det}\left(-2 X^{T} Y^{-1} Z^{2}\right)=(-2)^{4} \operatorname{det} X \frac{1}{\operatorname{det} Y}(\operatorname{det} Z)^{2}=\frac{16 \operatorname{det} X(\operatorname{det} Z)^{2}}{\operatorname{det} Y}$.
[6] 10. (a) Find the inverse of $A=\left[\begin{array}{rrr}1 & 3 & 1 \\ -2 & -5 & -2 \\ 3 & 14 & 4\end{array}\right]$.
[4]
(b) Use your answer to (a) to solve the system $\begin{aligned}-2 x_{1}-5 x_{2}-2 x_{3} & =1 \\ 3 x_{1}+14 x_{2}+4 x_{3} & =1 .\end{aligned}$

Solution.
(a) $[A \mid I]=\left[\begin{array}{rrr|rrr}1 & 3 & 1 & 1 & 0 & 0 \\ -2 & -5 & -2 & 0 & 1 & 0 \\ 3 & 14 & 4 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}1 & 3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & 0 \\ 0 & 5 & 1 & -3 & 0 & 1\end{array}\right]$

$$
\rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 1 & -5 & -3 & 0 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & -13 & -5 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 8 & 2 & -1 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & -13 & -5 & 1
\end{array}\right] .
$$

Thus $A^{-1}=\left[\begin{array}{rrr}8 & 2 & -1 \\ 2 & 1 & 0 \\ -13 & -5 & 1\end{array}\right]$.
(b) The system is $A \mathrm{x}=\mathrm{b}$ with $\mathrm{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, so the solution is

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rrr}
8 & 2 & -1 \\
2 & 1 & 0 \\
-13 & -5 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
9 \\
3 \\
-17
\end{array}\right] .
$$

[6] 11. Find the determinant of $A=\left[\begin{array}{rrrr}0 & 2 & 1 & 1 \\ 1 & 2 & -1 & -2 \\ -1 & -4 & 3 & 1 \\ 1 & 6 & 4 & 2\end{array}\right]$ by reducing to a triangular matrix.

Solution.

$$
\begin{aligned}
& \left|\begin{array}{rrrr}
0 & 2 & 1 & 1 \\
1 & 2 & -1 & -2 \\
-1 & -4 & 3 & 1 \\
1 & 6 & 4 & 2
\end{array}\right|=-\left|\begin{array}{rrrr}
1 & 2 & -1 & -2 \\
0 & 2 & 1 & 1 \\
-1 & -4 & 3 & 1 \\
1 & 6 & 4 & 2
\end{array}\right|=-\left|\begin{array}{rrrr}
1 & 2 & -1 & -2 \\
0 & 2 & 1 & 1 \\
0 & -2 & 2 & -1 \\
0 & 4 & 5 & 4
\end{array}\right| \\
& =-\left|\begin{array}{rrrr}
1 & 2 & -1 & -2 \\
0 & 2 & 1 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 3 & 2
\end{array}\right|=-\left|\begin{array}{rrrr}
1 & 2 & -1 & -2 \\
0 & 2 & 1 & 1 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right|=-12 .
\end{aligned}
$$

[3]
12. (a) Define the term similar matrices.

Now let $A=\left[\begin{array}{rr}-2 & -4 \\ 3 & 6\end{array}\right]$.
(b) Find the characteristic polynomial of A and use this to explain why A is similar to a diagonal matrix.
(c) Find a diagonal matrix D and an invertible matrix P such that $P^{-1} A P=D$.
(d) Find a diagonal matrix D and an invertible matrix S such that $S^{-1} D S=A$.

Solution.

(a) Matrices A and B are similar if there exists an invertible matrix P such that $B=P^{-1} A P$.
(b) The characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-2-\lambda & -4 \\
3 & 6-\lambda
\end{array}\right|=-(2+\lambda)(6-\lambda)+12=\lambda^{2}-4 \lambda=\lambda(\lambda-4) .
$$

Since the eigenvalues, $\lambda=0,4$ are distinct, A is similar to a diagonal matrix.
(c) To find the eigenspace for $\lambda=0$, we solve the system $(A-\lambda I) \mathrm{x}=0$ with $\lambda=0$ and $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$. We have

$$
A \rightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]
$$

so $y=t$ is free, $x=-2 y=-2 t$ and $\mathrm{x}=t\left[\begin{array}{r}-2 \\ 1\end{array}\right]$. To find the eigenspace for $\lambda=4$, we solve the system $(A-\lambda I) \mathrm{x}=0$ with $\lambda=4$ and $\mathrm{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$. We have

$$
A-4 I=\left[\begin{array}{rr}
-6 & -4 \\
3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
3 & 2 \\
0 & 0
\end{array}\right]
$$

so $y=t$ is free, $3 x=-2 y=-2 t, x=-\frac{2}{3} t$ and $x=t\left[\begin{array}{r}-\frac{2}{3} \\ 1\end{array}\right]$. The vectors $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-2 \\ 3\end{array}\right]$ are eigenvectors for 0 and 4, respectively. Putting these into the columns of a matrix $P=\left[\begin{array}{rr}-2 & -2 \\ 1 & 3\end{array}\right]$, we have $P^{-1} A P=D=\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right]$, the diagonal matrix whose diagonal entries correspond, in order, to the eigenvectors which are the columns of P.
(d) Since $P^{-1} A P=D, A=P D P^{-1}$, so take $S=P^{-1}=\frac{1}{4}\left[\begin{array}{rr}-3 & -2 \\ 1 & 2\end{array}\right]$.

