MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 8
 MATH 2050
 Answers

For practice and extra credit only.

1. Consider an arbitrary quadrilateral in a plane. Connect the midpoints of its sides to get a new quadrilateral. What do you notice about this new quadrilateral? Prove you conjecture using addition of vectors.

Hint: start from looking at midpoints of various squares and rectangles and then take a more general quadrilateral.
Answer: This queadrilateral is a parallelogram.
2. Find whether two lines with direction vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 3 \\ 3\end{array}\right]$ respectively intersect at a point if it is known that the first line goes via point $(0,-2,4)$ and the second via point $(1,1,2)$.
Answer: No. Because the system of linear equations $t=-s+1,2 t-2=3 s+1$, $3 t+4=3 s+2$ is inconsistent and thus does not have a solution.

3 . Write equation of line going via points $(1,2)$ and $(4,5)$. Does point A belong to the line? If not, what is the distance from the point to the line?
a) $\mathrm{A}(11,12)$
b) $\mathrm{A}(5,7,9)$

Answer: The line has equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+t\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]$.
a) point $\mathrm{A}(11,12,0)$ is on the line: $(\mathrm{t}=10 / 3)$.
b) point $\mathrm{A}(5,7,9)$ is not on the line. The distance is approximatly 9.03 units.

Pick point $\mathrm{B}(1,2,0)$ on the line then $\|\vec{B} A\|=\sqrt{122}$. Cosine of the angle between $\vec{B} A$ and the direction vector $\vec{d}=\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]$ of the line is $9 / \sqrt{244}$. The distance is found from this right triangle.
4. Find the projection of vector $\vec{v}=\left[\begin{array}{c}2 \\ -5 \\ 7\end{array}\right]$ onto vector $\vec{u}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$.

Find the angle between the vectors.
Answer: the projection is $\frac{10}{7}\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$; cosine of the angle is $10 / \sqrt{273}$; the angle is approximatly 53 degrees.
5. Consider triangle with vertices at points

$$
A(1,-1,1), \quad B(3,-6,8), \quad C(1,-2,4),
$$

(a) find the area of the triangle
(b) find equation of the plane to which the triangle belongs.

Answer: Calculate the cross product of $\vec{A} B=\left[\begin{array}{c}2 \\ -5 \\ 7\end{array}\right]$ and $\overrightarrow{A C}=\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right]$. The cross product is $\left[\begin{array}{c}-8 \\ -6 \\ -2\end{array}\right]$.
the area of the triangle is the half of the magnitude of the cross product: $\sqrt{26}$. The equation of the plane is $8(x-1)+6(y+1)+2(z-1)=0$ or equivalently, (after devision by 2$) 4 x+3 y+z=2$.
6. Give an example of a plane which is orthogonal to the plane $7 x-y-4 z=6$.

Answer: $4 y-z=1$. The normal vector of the two planes are orthogonal thus the planes themselves are orthogonal.
7. Give an example of a line which is orthogonal to the vector $\left[\begin{array}{c}1 \\ -2 \\ 5\end{array}\right]$. Explain.

Answer: $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]+t\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
The direction vector of the line is orthogonal to the given vector.

