MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

ASSIGNMENT 8 MATH 2050 sect. 3 ANSWERS.

1. Find the characteristic polynomial, eigenvalues, eigenvectors and (if possible) an invertable matrix P such that $P^{-1}AP$ is diagonal.

Hint: all eigenvalues in this problem are integers.

- (a) $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ Answer: 1) characteristic polynomial is $det(A - \lambda I) = (1 - \lambda)(2 - \lambda) - 6 = \lambda^2 - 3\lambda - 4$ 2) eigenvalues are $\lambda_1 = 4$ and $\lambda_2 = -1$, and they are the roots of the characteristic equation $\lambda^2 - 3\lambda - 4 = 0$ 3) parametric solution of the system (A - 4I)X = 0 is $X = t \begin{bmatrix} 2\\ 3 \end{bmatrix}$; parametric solution of the system (A+I)X = 0 is $X = s \begin{bmatrix} -1 \\ 1 \end{bmatrix}$; thus eigenvectors are $X_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. 4) matrix $P = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$ so that $P^{-1}AP = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix}$ is diagonal. (b) $A = \begin{bmatrix} 7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2 \end{bmatrix}$ Answer: 1) characteristic polynomial is $det(A - \lambda I)$ 2) eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 3$ and $\lambda_3 = 5$ 3) eigenvectors are $X_1 = \begin{bmatrix} 4 \\ 0 \\ 5 \end{bmatrix}$, $X_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $X_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 4) matrix $P = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & 0 \end{bmatrix}$ so that $P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ is diagonal. (c) $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{bmatrix}$ Answer: 1) characteristic polynomial is $det(A - \lambda I) = (\lambda - 2)^3$.
 - 2) eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 2$ and $\lambda_3 = 2$

 $(\lambda = 2 \text{ of multiplicity } 3)$

3) solution of the system (A - 3I)X = 0 has two parameters $X = sX_1 + tX_2$ which gives two eigenvectors $X_1 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$, $X_2 = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$

4) since there only two eigenvectors there is no invertable matrix P and A is not diagonalizable.

(d)
$$A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$$

Answer:

1) characteristic polynomial is $det(A - \lambda I) = (\lambda - 1)(\lambda - 2)(\lambda - 3)$

2) eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 2$ and $\lambda_3 = 3$ 3) eigenvectors are $X_1 = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$, $X_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $X_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ 4) matrix $P = \begin{bmatrix} 1 & -1 & 0 \\ -3 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}$ so that $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is diagonal.

2. Given $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, show that

a) the characteristic polynomial is $x^2 - trA \cdot x + \det A$ (recall trA = a + d). Solution: characteristic polynomial is

 $det(A - xI) = (a - x)(d - x) - bc = x^2 - (a + d) + (ad - bc) = x^2 - trA \cdot x + det A.$ b) the eigenvalues are

$$\frac{a+d}{2} \pm \sqrt{\left(\frac{a-d}{2}\right)^2 + bc}$$

Solution: using formula for roots of quadratic equation $Ax^2 + Bx + C = 0$, with A = 1, B = -(a + d), C = ad - bc and after algebraic simplification we get this expression.

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{a+d}{2} + \sqrt{\frac{(a+d)^2 - 4ad + 4bc}{4}} = \frac{a+d}{2} \pm \sqrt{\left(\frac{a-d}{2}\right)^2 + bc}.$$

3. If $P^{-1}AP$ and $P^{-1}BP$ are both diagonal, show that AB = BA.

Solution: Denote $D = P^{-1}AP$ and $E = P^{-1}BP$. Note that for any diagonal matrices DE = ED. Evaluate $DE = (P^{-1}AP)(P^{-1}BP) = P^{-1}ABP$, thus $AB = PDEP^{-1}$; Similarly, $ED = P^{-1}BAP$ and so $BA = PEDP^{-1} = PDEP^{-1} = AB$.

4. Suppose λ is an eigenvalue of a square matrix A. Show that λ^2 is an eigenvalue of A^2 (with the same eigenvector X).

Solution: λ is an eigenvalue of a square matrix A means that for some vector X, $AX = \lambda X$. Consider $A^2X = AAX = A(AX) = A(\lambda X) = \lambda AX = \lambda^2 X$, which means that λ^2 is an eigenvalue of A^2 .

– What can you conjecture (and prove) about λ^k and A^k for any $k \geq 2$?

Similarly, for any integer
$$k \ge 2$$
, λ^k is an eigenvalue of A^k (with the same eigenvector X).

5. Consider a linear dinamical system $V_{k+1} = AV_k$ for $k \ge 0$. Find exact formula for V_k . Approximate V_k for large values of k.

(a)
$$A = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}, V_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
Answer: $V_k = b_1 \lambda_1^k X_1 + b_2 \lambda_2^k X_2$, where
 $\lambda_1 = 3, \lambda_2 = -2$ are eigenvalues of A ,
 $X_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, X_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ are corresponding eigenvectors, and
 $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = P^{-1}V_0 = \frac{1}{5} \begin{bmatrix} 4 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6/5 \\ 1/5 \end{bmatrix}.$
Approximate V_k for large values of k is $V_k \approx \frac{6}{5} 3^k \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
(b)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix} V_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
Answer:
 $V_k = b_1 \lambda_1^k X_1 + b_2 \lambda_2^k X_2 + b_3 \lambda_3^k X_3$, where
 $\lambda_1 = 1, \lambda_2 = -2, \lambda_3 = 5$ are eigenvalues of A ,
 $X_1 = \begin{bmatrix} -4 \\ 1 \\ 1 \\ 1 \end{bmatrix}, X_2 = \begin{bmatrix} 0 \\ -3 \\ 4 \end{bmatrix}, X_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ are corresponding eigenvectors, and
 $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = P^{-1}V_0 = \frac{1}{28} \begin{bmatrix} -7 & 0 & 0 \\ 0 & -16 & 16 \\ 7 & 16 & 12 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/4 \\ 0 \\ 5/4 \end{bmatrix}.$
Approximate V_k for large values of k is $V_k \approx \frac{5}{4}5^k \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.