1. Find the characteristic polynomial, eigenvalues, eigenvectors and (if possible) an invertable matrix P such that $P^{-1} A P$ is diagonal.
Hint: all eigenvalues in this problem are integers.
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$

Answer:

1) characteristic polynomial is $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)-6=\lambda^{2}-3 \lambda-4$
2) eigenvalues are $\lambda_{1}=4$ and $\lambda_{2}=-1$, and they are the roots of the characteristic equation $\lambda^{2}-3 \lambda-4=0$
3) parametric solution of the system $(A-4 I) X=0$ is $X=t\left[\begin{array}{l}2 \\ 3\end{array}\right]$; parametric solution of the system $(A+I) X=0$ is $X=s\left[\begin{array}{c}-1 \\ 1\end{array}\right]$;
thus eigenvectors are $X_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $X_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
4) matrix $P=\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$ so that $P^{-1} A P=\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]$ is diagonal.
(b) $A=\left[\begin{array}{ccc}7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2\end{array}\right]$

Answer:

1) characteristic polynomial is $\operatorname{det}(A-\lambda I)$
$=(5-\lambda)[(7-\lambda)(-2-\lambda)+20]=(5-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=-(\lambda-5)(\lambda-3)(\lambda-2)$
2) eigenvalues are $\lambda_{1}=2, \lambda_{2}=3$ and $\lambda_{3}=5$
3) eigenvectors are $X_{1}=\left[\begin{array}{l}4 \\ 0 \\ 5\end{array}\right], X_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $X_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
4) matrix $P=\left[\begin{array}{lll}4 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 1 & 0\end{array}\right]$ so that $P^{-1} A P=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right]$ is diagonal.
(c) $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]$

Answer:

1) characteristic polynomial is $\operatorname{det}(A-\lambda I)=(\lambda-2)^{3}$.
2) eigenvalues are $\lambda_{1}=2, \lambda_{2}=2$ and $\lambda_{3}=2$
($\lambda=2$ of multiplicity 3)
3) solution of the system $(A-3 I) X=0$ has two parameters $X=s X_{1}+t X_{2}$ which gives two eigenvectors $X_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right], X_{2}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
4) since there only two eigenvectors there is no invertable matrix P and A is not diagonalizable.
(d) $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5\end{array}\right]$

Answer:

1) characteristic polynomial is $\operatorname{det}(A-\lambda I)=(\lambda-1)(\lambda-2)(\lambda-3)$
2) eigenvalues are $\lambda_{1}=1, \lambda_{2}=2$ and $\lambda_{3}=3$
3) eigenvectors are $X_{1}=\left[\begin{array}{c}1 \\ -3 \\ 1\end{array}\right], X_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $X_{3}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
4) matrix $P=\left[\begin{array}{ccc}1 & -1 & 0 \\ -3 & 1 & -1 \\ 1 & 0 & 1\end{array}\right]$ so that $P^{-1} A P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ is diagonal.
2. Given $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, show that
a) the characteristic polynomial is $x^{2}-\operatorname{tr} A \cdot x+\operatorname{det} A($ recall $\operatorname{tr} A=a+d)$.

Solution: characteristic polynomial is
$\operatorname{det}(A-x I)=(a-x)(d-x)-b c=x^{2}-(a+d)+(a d-b c)=x^{2}-\operatorname{tr} A \cdot x+\operatorname{det} A$.
b) the eigenvalues are

$$
\frac{a+d}{2} \pm \sqrt{\left(\frac{a-d}{2}\right)^{2}+b c}
$$

Solution: using formula for roots of quadratic equation $A x^{2}+B x+C=0$, with $A=1$, $B=-(a+d), C=a d-b c$ and after algebraic simplification we get this expression.

$$
x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}=\frac{a+d}{2}+\sqrt{\frac{(a+d)^{2}-4 a d+4 b c}{4}}=\frac{a+d}{2} \pm \sqrt{\left(\frac{a-d}{2}\right)^{2}+b c} .
$$

3. If $P^{-1} A P$ and $P^{-1} B P$ are both diagonal, show that $A B=B A$.

Solution: Denote $D=P^{-1} A P$ and $E=P^{-1} B P$. Note that for any diagonal matrices $D E=E D$. Evaluate $D E=\left(P^{-1} A P\right)\left(P^{-1} B P\right)=P^{-1} A B P$, thus $A B=P D E P^{-1}$; Similarly, $E D=P^{-1} B A P$ and so $B A=P E D P^{-1}=P D E P^{-1}=A B$.
4. Suppose λ is an eigenvalue of a square matrix A. Show that λ^{2} is an eigenvalue of A^{2} (with the same eigenvector X).
Solution: λ is an eigenvalue of a square matrix A means that for some vector $X, A X=\lambda X$. Consider $A^{2} X=A A X=A(A X)=A(\lambda X)=\lambda A X=\lambda^{2} X$, which means that λ^{2} is an eigenvalue of A^{2}.

- What can you conjecture (and prove) about λ^{k} and A^{k} for any $k \geq 2$?

Similarly, for any integer $k \geq 2, \lambda^{k}$ is an eigenvalue of A^{k} (with the same eigenvector X).
5. Consider a linear dinamical sytem $V_{k+1}=A V_{k}$ for $k \geq 0$. Find exact formula for V_{k}. Approximate V_{k} for large values of k.
(a) $A=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right], V_{0}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Answer: $V_{k}=b_{1} \lambda_{1}^{k} X_{1}+b_{2} \lambda_{2}^{k} X_{2}$, where
$\lambda_{1}=3, \lambda_{2}=-2$ are eigenvalues of A,
$X_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], X_{2}=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ are corresponding eigenvectors, and
$\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]=P^{-1} V_{0}=\frac{1}{5}\left[\begin{array}{cc}4 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}6 / 5 \\ 1 / 5\end{array}\right]$.
Approximate V_{k} for large values of k is $V_{k} \approx \frac{6}{5} 3^{k}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 1\end{array}\right] \quad V_{0}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Answer:
$V_{k}=b_{1} \lambda_{1}^{k} X_{1}+b_{2} \lambda_{2}^{k} X_{2}+b_{3} \lambda_{3}^{k} X_{3}$, where
$\lambda_{1}=1, \lambda_{2}=-2, \lambda_{3}=5$ are eigenvalues of A,
$X_{1}=\left[\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right], X_{2}=\left[\begin{array}{c}0 \\ -3 \\ 4\end{array}\right], X_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ are corresponding eigenvectors, and
$\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=P^{-1} V_{0}=\frac{1}{28}\left[\begin{array}{ccc}-7 & 0 & 0 \\ 0 & -16 & 16 \\ 7 & 16 & 12\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 / 4 \\ 0 \\ 5 / 4\end{array}\right]$.
Approximate V_{k} for large values of k is $V_{k} \approx \frac{5}{4} 5^{k}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.

