1. (a) Give a definition of an eigenvalue and corresponding eigenvector of a matrix.
(b) Explain the method (step by step) how to find all the eigenvalues and corresponding eigenvectors of a matrix.
(c) Give an exapmle of a problem when knowing the eigenvalues and eigenvectors of a matrix can be useful to find the solution explicitly.
2. Find the characteristic polynomial, eigenvalues, eigenvectors and (if possible) an invertable matrix P such that $P^{-1} A P$ is diagonal. If the later is not possible, explain why.

Hint: all eigenvalues in this problem are integers.
(a) $A=\left[\begin{array}{ll}5 & 3 \\ 2 & 4\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}2 & -16 & -2 \\ 0 & 5 & 0 \\ 2 & -8 & -3\end{array}\right]$
(b) $A=\left[\begin{array}{ll}2 & 0 \\ 3 & 2\end{array}\right]$
(d) $A=\left[\begin{array}{ccc}2 & 1 & -12 \\ 0 & 1 & 11 \\ 1 & 1 & 4\end{array}\right]$
3. Let a matrix A have eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=3$ with corresponding eigenvectors $X_{1}=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ and $X_{2}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$. Find the matrix A.
4. Let $A=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & -3 & -2 \\ 5 & 5 & 4\end{array}\right]$. Find an invertable matrix P such that $P^{-1} A P=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
5. Consider a linear dinamical sytem $V_{k+1}=A V_{k}$ for $k \geq 0$. Find exact formula for V_{k}. Approximate V_{k} for large values of k.
(a) $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 4\end{array}\right], V_{0}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}2 & 0 & 2 \\ -16 & 5 & -8 \\ -2 & 0 & -3\end{array}\right] V_{0}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
6. True or False? Explain.
a) every square matrix is diagonalizable (i.e. similar to a diagonal matrix).
b) any $n \times n$-matrix has at most n distinct eigenvalues.
c) if $\lambda \neq 0$ is an eigenvalue of A and A is invertable then λ^{-1} is an eigenvalue of A^{-1}.

