Assignment 7
MATH 2050 sect. 3 Due: Friday November 3

1. Evaluate determinant of each matrix by two ways:
(1) using Laplace expansion, and
(2) by reducing the matrix to the upper triangular form.
(a) $\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & -1 & 3\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & a & b \\ a & b & 1 \\ b & 1 & a\end{array}\right]$
(b) $\left[\begin{array}{cccc}2 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & -1 & 2 \\ -1 & -1 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1\end{array}\right]$
2. The characteristic polynomial of matrix A is defined as $P_{A}(x)=\operatorname{det}(x \cdot I-A)$, where I is the identity matrix of the same size as A. Find the characteristic polynomial for $A=\left[\begin{array}{cc}3 & 2 \\ 1 & -1\end{array}\right]$. Evaluate the polynomial for $x=A$.
(Example: if $p(x)=3 x^{2}-4 x+5$ then for $x=A$ we obtain matrix $p(A)=3 A^{2}-4 A+5 I$.
3. Let A, B, C be square matrices of the same size. Given $\operatorname{det} A=-1$, $\operatorname{det} B=2$, and $\operatorname{det} C=3$, find $\operatorname{det} A^{5} B C^{T} A^{-1} B^{2}$.
4. Explain what can be said about $\operatorname{det} A$ if:
(a) $A^{2}=A$
(b) $A^{k}=0$ for some integer k. Here 0 is a zero matrix.
(c) $A^{2}+I=0$
(d) $A^{3}=A$
(e) $A=A^{T}$
(f) $A^{-1}=A^{T}$
5. Let a square matrix A was obtained from a square matrix B by a series of elementary row operations. Is it true that $\operatorname{det} A=\operatorname{det} B$? Give an example supporting your answer.
6. Find all values a such that the matrix is invertable
(a) $\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & a \\ 2 & a & 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}0 & a & -a \\ -1 & 1 & -1 \\ a & -a & a\end{array}\right]$
