1. (a) Give a definition of an eigenvalue and corresponding eigenvector of a matrix.

$$
A X=\lambda X, \quad X \neq 0
$$

(b) Explain the method (step by step) how to find all the eigenvalues and corresponding eigenvectors of a matrix.

1. Solve $\operatorname{det}(A-\lambda I)=0$ for λ to find all eigen values.
2. For each value of λ found at step 1 , solve homogeneous system $(A-\lambda I) X=0$ for X to find corresponding eigenvector.
3. Check your eigen pair to satisfy the definition.
(c) Give an exapmle of a problem when knowing the eigenvalues and eigenvectors of a matrix can be useful to find the solution explicitly.
Knowing the eigenvalues λ_{1}, λ_{2} and eigenvectors X_{1}, X_{2} of a (2×2)-matrix A can be useful to find a power of this matrix, say A^{100} in a faster way:

$$
A^{100}=P D^{100} P^{-1}, \quad D^{100}=\left[\begin{array}{cc}
\lambda_{1}^{100} & 0 \\
0 & \lambda_{2}^{100}
\end{array}\right], \quad P=\left[X_{1} \mid X_{2}\right] .
$$

2. Find the characteristic polynomial, eigenvalues, eigenvectors and (if possible) an invertable matrix P such that $P^{-1} A P$ is diagonal. If the later is not possible, explain why.
(a) $A=\left[\begin{array}{ll}5 & 3 \\ 2 & 4\end{array}\right]$

Answer:

characteristic polynomial: $\lambda^{2}-9 \lambda+14$;
eigenvalues, eigenvectors: $\lambda_{1}=7, X_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right] ; \lambda_{2}=2, X_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$;
$\operatorname{matrix} P=\left[\begin{array}{cc}3 & 1 \\ 2 & -1\end{array}\right]$.
(b) $A=\left[\begin{array}{ll}2 & 0 \\ 3 & 2\end{array}\right]$

Answer:

characteristic polynomial: $\lambda^{2}-4 \lambda+4$;
eigenvalues, eigenvectors: $\lambda_{1}=\lambda_{2}=2, X=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(multiple root and only one eigenvector.)
matrix P does not exist.
(c) $A=\left[\begin{array}{ccc}2 & -16 & -2 \\ 0 & 5 & 0 \\ 2 & -8 & -3\end{array}\right]$ Answer:
characteristic polynomial: $-\lambda^{3}+4 \lambda^{2}+7 \lambda-10$;
eigenvalues, eigenvectors:
$\lambda_{1}=1, X_{1}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right] ; \lambda_{2}=5, X_{2}=\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right] ; \lambda_{3}=-2, X_{3}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right] ;$
$\operatorname{matrix} P=\left[\begin{array}{ccc}2 & 4 & 1 \\ 0 & -1 & 0 \\ 1 & 2 & 2\end{array}\right]$.
(d) $A=\left[\begin{array}{ccc}2 & 1 & -12 \\ 0 & 1 & 11 \\ 1 & 1 & 4\end{array}\right]$

Answer:
characteristic polynomial: $-\lambda^{3}+7 \lambda^{2}-15 \lambda=9$;
eigenvalues, eigenvectors: $\lambda_{1}=1, X_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] ; \lambda_{2}=\lambda_{3}=3, X=\left[\begin{array}{c}-13 \\ 11 \\ 2\end{array}\right]$;
(for the multiple root there is only one eigenvector.)
matrix P does not exist.
3. Let a matrix A have eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=3$ with corresponding eigenvectors $X_{1}=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ and $X_{2}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$. Find the matrix A.
Answer: $A=P D P^{-1}=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$.
4. Let $A=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & -3 & -2 \\ 5 & 5 & 4\end{array}\right]$. Find an invertable matrix P such that $P^{-1} A P=\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right]$. Answer: In general form $P=\left[\begin{array}{ccc}-t & 0 & -q \\ t & -s & q \\ -t & s & 0\end{array}\right]$ for any nonzero values t, s, q. For example, $P=\left[\begin{array}{ccc}-1 & 0 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right]$ if parameters s, t, q all are set equal to 1.
5. Consider a linear dynamical system $V_{k+1}=A V_{k}$ for $k \geq 0$. Find exact formula for V_{k}. Approximate V_{k} for large values of k.
(a) $A=\left[\begin{array}{ll}5 & 2 \\ 3 & 4\end{array}\right], V_{0}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$

Answer:

$$
V_{k}=\frac{7^{k}}{5}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+2^{k} \frac{3}{5}\left[\begin{array}{c}
-2 \\
3
\end{array}\right] .
$$

$V_{k} \approx \frac{7^{k}}{5}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ for large values of k.
(b) $A=\left[\begin{array}{ccc}2 & 0 & 2 \\ -16 & 5 & -8 \\ -2 & 0 & -3\end{array}\right] \quad V_{0}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
6. True or False? Explain.
a) every square matrix is diagonalizable (i.e. similar to a diagonal matrix).

Answer: False. Problem 2b gives an example of square but non-diagonalizable matrix.
b) any $n \times n$-matrix has at most n distinct eigenvalues.

Answer: True. The characteristic polynomial has degree n, thus at most n distinct roots are possible.
c) if $\lambda \neq 0$ is an eigenvalue of A and A is invertable then λ^{-1} is an eigenvalue of A^{-1}.

Answer: True. Multiply equation $A X=\lambda X$ by A^{-1} from the left; then devide both sides by lambda. You get $A^{-1} X=\lambda^{-1} X$.

