MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 7 MATH 2050 Answers

1. (a) Give a definition of an eigenvalue and corresponding eigenvector of a matrix.

$$AX = \lambda X, \qquad X \neq 0.$$

- (b) Explain the method (step by step) how to find all the eigenvalues and corresponding eigenvectors of a matrix.
 - 1. Solve $det(A \lambda I) = 0$ for λ to find all eigen values.
 - 2. For each value of λ found at step 1, solve homogeneous system $(A \lambda I)X = 0$ for X to find corresponding eigenvector.
 - 3. Check your eigen pair to satisfy the definition.
- (c) Give an example of a problem when knowing the eigenvalues and eigenvectors of a matrix can be useful to find the solution explicitly.

Knowing the eigenvalues λ_1, λ_2 and eigenvectors X_1, X_2 of a (2×2) -matrix A can be useful to find a power of this matrix, say A^{100} in a faster way:

$$A^{100} = PD^{100}P^{-1}, \quad D^{100} = \left[\begin{array}{cc} \lambda_1^{100} & 0 \\ 0 & \lambda_2^{100} \end{array} \right], \quad P = [X_1|X_2].$$

- 2. Find the characteristic polynomial, eigenvalues, eigenvectors and (if possible) an invertable matrix P such that $P^{-1}AP$ is diagonal. If the later is not possible, explain why.
 - (a) $A = \begin{bmatrix} 5 & 3 \\ 2 & 4 \end{bmatrix}$

Answer:

characteristic polynomial: $\lambda^2 - 9\lambda + 14$;

eigenvalues, eigenvectors: $\lambda_1 = 7$, $X_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$; $\lambda_2 = 2$, $X_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$;

$$\text{matrix } P = \left[\begin{array}{cc} 3 & 1 \\ 2 & -1 \end{array} \right].$$

(b)
$$A = \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix}$$

Answer:

characteristic polynomial: $\lambda^2 - 4\lambda + 4$;

eigenvalues, eigenvectors: $\lambda_1 = \lambda_2 = 2, X = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(multiple root and only one eigenvector.)

matrix P does not exist.

(c)
$$A = \begin{bmatrix} 2 & -16 & -2 \\ 0 & 5 & 0 \\ 2 & -8 & -3 \end{bmatrix}$$
 Answer:

characteristic polynomial: $-\lambda^3 + 4\lambda^2 + 7\lambda - 10$; eigenvalues, eigenvectors:

$$\lambda_{1} = 1, X_{1} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}; \lambda_{2} = 5, X_{2} = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}; \lambda_{3} = -2, X_{3} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix};$$
matrix $P = \begin{bmatrix} 2 & 4 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

$$\text{matrix } P = \left[\begin{array}{ccc} 2 & 4 & 1 \\ 0 & -1 & 0 \\ 1 & 2 & 2 \end{array} \right].$$

(d)
$$A = \begin{bmatrix} 2 & 1 & -12 \\ 0 & 1 & 11 \\ 1 & 1 & 4 \end{bmatrix}$$

characteristic polynomial: $-\lambda^3 + 7\lambda^2 - 15\lambda = 9$;

eigenvalues, eigenvectors:
$$\lambda_1 = 1$$
, $X_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$; $\lambda_2 = \lambda_3 = 3$, $X = \begin{bmatrix} -13 \\ 11 \\ 2 \end{bmatrix}$;

(for the multiple root there is only one eigenvector.) matrix P does not exist.

3. Let a matrix A have eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 3$ with corresponding eigenvectors $X_1 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ and $X_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Find the matrix A.

Answer: $A = PDP^{-1} = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$.

4. Let $A = \begin{bmatrix} 4 & 2 & 2 \\ -5 & -3 & -2 \\ 5 & 5 & 4 \end{bmatrix}$. Find an invertable matrix P such that $P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Answer: In general form $P = \begin{bmatrix} -t & 0 & -q \\ t & -s & q \\ -t & s & 0 \end{bmatrix}$ for any nonzero values t, s, q. For example,

$$P = \begin{bmatrix} -1 & 0 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
 if parameters s, t, q all are set equal to 1.

5. Consider a linear dynamical system $V_{k+1} = AV_k$ for $k \geq 0$. Find exact formula for V_k . Approximate V_k for large values of k.

(a)
$$A = \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix}$$
, $V_0 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

Answer

$$V_k = \frac{7^k}{5} \begin{bmatrix} 1\\1 \end{bmatrix} + 2^k \frac{3}{5} \begin{bmatrix} -2\\3 \end{bmatrix}.$$

 $V_k \approx \frac{7^k}{5} \begin{bmatrix} 1\\1 \end{bmatrix}$ for large values of k.

(b)
$$A = \begin{bmatrix} 2 & 0 & 2 \\ -16 & 5 & -8 \\ -2 & 0 & -3 \end{bmatrix} V_0 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

- 6. True or False? Explain.
 - a) every square matrix is diagonalizable (i.e. similar to a diagonal matrix).

Answer: False. Problem 2b gives an example of square but non-diagonalizable matrix.

b) any $n \times n$ -matrix has at most n distinct eigenvalues.

Answer: **True**. The characteristic polynomial has degree n, thus at most n distinct roots are possible.

c) if $\lambda \neq 0$ is an eigenvalue of A and A is invertable then λ^{-1} is an eigenvalue of A^{-1} .

Answer: **True**. Multiply equation $AX = \lambda X$ by A^{-1} from the left; then devide both sides by lambda. You get $A^{-1}X = \lambda^{-1}X$.