MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

1. (a) Give a definition of an eigenvalue and corresponding eigenvector of a matrix.

$$AX = \lambda X, \qquad X \neq 0.$$

- (b) Explain the method (step by step) how to find all the eigenvalues and corresponding eigenvectors of a matrix.
 - 1. Solve $det(A \lambda I) = 0$ for λ to find all eigen values.
 - 2. For each value of λ found at step 1, solve homogeneous system $(A \lambda I)X = 0$ for
 - \boldsymbol{X} to find corresponding eigenvector.
 - 3. Check your eigen pair to satisfy the definition.
- (c) Give an example of a problem when knowing the eigenvalues and eigenvectors of a matrix can be useful to find the solution explicitly.
 Knowing the eigenvalues λ₁, λ₂ and eigenvectors X₁, X₂ of a (2 × 2)-matrix A can be

useful to find a power of this matrix, say A^{100} in a faster way:

$$A^{100} = PD^{100}P^{-1}, \quad D^{100} = \begin{bmatrix} \lambda_1^{100} & 0\\ 0 & \lambda_2^{100} \end{bmatrix}, \quad P = [X_1|X_2].$$

- 2. Find the characteristic polynomial, eigenvalues, eigenvectors and (if possible) an invertable matrix P such that $P^{-1}AP$ is diagonal. If the later is not possible, explain why.
 - (a) $A = \begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix}$

Answer:

characteristic polynomial: $\lambda^2 - 5\lambda - 14$; eigenvalues, eigenvectors: $\lambda_1 = 7, X_1 = \begin{bmatrix} 0.8 \\ 1 \end{bmatrix}; \lambda_2 = -2, X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix};$ matrix $P = \begin{bmatrix} 0.8 & -1 \\ 1 & 1 \end{bmatrix}$. (b) $A = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$ Answer: characteristic polynomial: $\lambda^2 - 3\lambda - 4$; eigenvalues, eigenvectors: $\lambda_1 = 4, X_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \lambda_2 = -1, X_2 = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix}$

matrix $P = \begin{bmatrix} 2 & -0.5 \\ 1 & 1 \end{bmatrix}$.

(c)
$$A = \begin{bmatrix} 7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2 \end{bmatrix}$$

Answer:

characteristic polynomial: $\lambda^3 - 10\lambda^2 + 31\lambda - 30$; eigenvalues, eigenvectors:

$$\lambda_{1} = 2, X_{1} = \begin{bmatrix} 0.8 \\ 0 \\ 1 \end{bmatrix}; \lambda_{2} = 3, X_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; \lambda_{3} = 5, X_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix};$$

matrix $P = \begin{bmatrix} 0.8 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$
(d) $A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$

Answer:

characteristic polynomial: $\lambda^3 - 6\lambda^2 + 11\lambda - 6$; eigenvalues, eigenvectors:

$$\lambda_{1} = 3, X_{1} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}; \lambda_{2} = 1, X_{2} = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}; \lambda_{3} = 2, X_{3} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix};$$

matrix $P = \begin{bmatrix} 0 & 1 & -1 \\ -1 & -3 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$

3. Let a matrix A have eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 3$ with corresponding eigenvectors $X_1 = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ and $X_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$. Find the matrix A. Answer: $A = PDP^{-1} = \begin{bmatrix} -1 & 4 \\ 1 & 2 \end{bmatrix}$. 4. Let $A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 2 & 1 \\ 4 & -1 & -1 \end{bmatrix}$. Find an invertible matrix P such that $P^{-1}AP = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. Answer: In general form $P = \begin{bmatrix} q & s & -t \\ 0 & -2s & -t \\ q & 3s & 3t \end{bmatrix}$ for any nonzero values t, s, q. For example,

$$P = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -2 & -1 \\ 1 & 3 & 3 \end{bmatrix}$$
 if parameters s, t, q all are set equal to 1.

- 5. Consider a linear dynamical system $V_{k+1} = AV_k$ for $k \ge 0$. Find exact formula for V_k . Approximate V_k for large values of k.
 - (a) $A = \begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix}, V_0 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ Answer: $V_k = \frac{7^k}{9} \begin{bmatrix} 4 \\ 5 \end{bmatrix} + \frac{13 \cdot (-2)^k}{9} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

 $V_k \approx \frac{7^k}{9} \begin{bmatrix} 4\\5 \end{bmatrix} \text{ for large values of } k.$ (b) $A = \begin{bmatrix} -1 & 3 & -3\\-3 & 5 & -3\\-6 & 6 & -4 \end{bmatrix} V_0 = \begin{bmatrix} 2\\2\\0 \end{bmatrix}$ $Answer: V_k = 2^{k+1} \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$

The eigenvalues in this problem are $\lambda_1 = -4$ and $\lambda_2 = \lambda_3 = 2$. That is, one of the eigenvalues is of multiplicity two.

Eigenvector for
$$\lambda_1 = -4$$
 is $X_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$.
Eigenvectors for $\lambda_2 = \lambda_3 = 2$ are $X_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $X_3 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$.
This gives $b_1 = 0, b_2 = 2, b_3 = 0$, and $V_k = b_2 \lambda_2^k X_2 = 2^{k+1} \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

6. True or False? Explain.

a) a) If λ is an eigenvalue of matrix A , then λ^{100} is an eigenvalue of the matrix $A^{100}.$

Answer: True. If $AX = \lambda X$, then $A^2X = \lambda AX = \lambda^2 X$, and by induction, $A^{100}X = \lambda^{100}X$.

b) If we substitute matrix A into its characteristic polynomial then the result is the identity matrix.

Answer: False. The result is the zero matrix. This is the Hamilton-Cayley theorem, as discussed in class.

c) If $\lambda \neq 0$ is an eigenvalue of A then λ^{-1} is an eigenvalue of A^{-1} .

Answer: False. The matrix A has to be invertible.