MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

ASSIGNMENT 7 MATH 2050 sect. 3 ANSWERS.

- 1. Evaluate determinant of each matrix by **two** ways:
 - (1) using Laplace expansion, and
 - (2) by reducing the matrix to the upper triangular form.

(a)
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & -1 & 3 \end{bmatrix} Answer: \det A = -1.$$

(b) $A = \begin{bmatrix} 2 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & -1 & 2 \\ -1 & -1 & 0 & 0 \end{bmatrix} Answer: \det A = -11.$
(c) $A = \begin{bmatrix} 1 & a & b \\ a & b & 1 \\ b & 1 & a \end{bmatrix} Answer: \det A = 3ab - a^3 - b^3 - 1.$
(d) $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \end{bmatrix} Answer: \det A = 0.$

2. The characteristic polynomial of matrix A is defined as $P_A(x) = \det(x \cdot I - A)$, where I is the identity matrix of the same size as A. Find the characteristic polynomial for $A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$. Evaluate the polynomial for x = A.

$$P_A(x) = \det(x \cdot I - A) = \det \begin{bmatrix} x - 3 & -2 \\ -1 & x + 1 \end{bmatrix} = x^2 - 2x - 5.$$

Then $P_A(A) = A^2 - 2A - 5I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$

- 3. Let A, B, C be square matrices of the same size. Given det A = -1, det B = 2, and det C = 3, find det $A^5BC^TA^{-1}B^2$. Answer: det $A^5BC^TA^{-1}B^2 = (-1)^5 \cdot 2 \cdot 3 \cdot (-1) \cdot 2^2 = 24$
- 4. Explain what can be said about $\det A$ if:
 - (a) A² = A
 Solution: Let A² = A, then det(A²) = det A. But det(A²) = (det A)².
 Denote x = detA and solve x² = x for x. We get x = 0 or x = 1.
 Thus if A² = A then det A can be either 0 or 1.

- (b) $A^k = 0$ for some integer k. Here 0 is a zero matrix. Solution: Let $A^k = 0$, then det $A^k = 0$ for some k. This implies $(\det A)^k = 0$, and so det A = 0.
- (c) $A^2 + I = 0$

Solution: Let $A^2 = -I$, then det $A^2 = det(-I)$. There are two cases:

(1) the size of the matrices, n is even. Then det(-I) = 1. The equation becomes $(det A)^2 = 1$ thus det A can be either 1 or -1.

(2) the size of the matrices, n is odd. Then det(-I) = -1. The equation becomes $(det A)^2 = -1$ thus det A can't be real number. (it is an imaginary number either i or -i).

(d) $A^3 = A$

Solution: Let $A^3 = A$, then $det(A^3) = det A$, or equivaletly, $(det A)^3 = det A$. This implies that det A can be either 0, or 1 or -1.

(e) $A = A^T$

Solution: This condition implies that A is symmetric, but nothing more. Thus determinant of matrix A can have any number.

(f) $A^{-1} = A^T$

Solution: Let $A^{-1} = A^T$, then $\det(A^{-1}) = \det(A^T)$. Consequently, $\frac{1}{\det A} = \det A$. Thus $\det A^2 = 1$. We have: $\det A$ can be either 1 or -1.

5. Let a square matrix A was obtained from a square matrix B by a series of elementary row operations. Is it true that det $A = \det B$? Give an example supporting your answer. *Answer.* NO. If switching of two rows or multiplication of a row by a number was em-

ployed, the determinant will in general be changed.

If only third EROs were used, then the determinant will not change.

6. Find all values a such that the matrix is invertable

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & a \\ 2 & a & 1 \end{bmatrix}$$

Solution:
$$\det \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & a \\ 2 & a & 1 \end{bmatrix} = a^2 - 4a + 3 = (a - 3)(a - 1).$$

The determinant becomes zeto at a = 3 or a = 1, and this gives values of a when the matrix is not invertable. For all other values of a this matrix is invertable.

(b)
$$\begin{bmatrix} 0 & a & -a \\ -1 & 1 & -1 \\ a & -a & a \end{bmatrix}$$

Solution:
$$\det \begin{bmatrix} 0 & a & -a \\ -1 & 1 & -1 \\ a & -a & a \end{bmatrix} = 0$$

regardless of value of a .

Thus there is no such value a for which the matrix is invertable.