1. Evaluate determinant of each matrix by two ways:
(1) using Laplace expansion, and
(2) by reducing the matrix to the upper triangular form.
(a) $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & -1 & 3\end{array}\right]$ Answer: $\operatorname{det} A=-1$.
(b) $A=\left[\begin{array}{cccc}2 & 1 & 1 & 3 \\ 0 & 1 & 1 & 2 \\ 1 & 3 & -1 & 2 \\ -1 & -1 & 0 & 0\end{array}\right]$ Answer: $\operatorname{det} A=-11$.
(c) $A=\left[\begin{array}{lll}1 & a & b \\ a & b & 1 \\ b & 1 & a\end{array}\right]$ Answer: $\operatorname{det} A=3 a b-a^{3}-b^{3}-1$.
(d) $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1\end{array}\right]$ Answer: $\operatorname{det} A=0$.
2. The characteristic polynomial of matrix A is defined as $P_{A}(x)=\operatorname{det}(x \cdot I-A)$, where I is the identity matrix of the same size as A. Find the characteristic polynomial for $A=\left[\begin{array}{cc}3 & 2 \\ 1 & -1\end{array}\right]$. Evaluate the polynomial for $x=A$.
Solution
$P_{A}(x)=\operatorname{det}(x \cdot I-A)=\operatorname{det}\left[\begin{array}{cc}x-3 & -2 \\ -1 & x+1\end{array}\right]=x^{2}-2 x-5$.
Then $P_{A}(A)=A^{2}-2 A-5 I=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
3. Let A, B, C be square matrices of the same size. Given $\operatorname{det} A=-1$, $\operatorname{det} B=2$, and $\operatorname{det} C=3$, find $\operatorname{det} A^{5} B C^{T} A^{-1} B^{2}$.
Answer: $\operatorname{det} A^{5} B C^{T} A^{-1} B^{2}=(-1)^{5} \cdot 2 \cdot 3 \cdot(-1) \cdot 2^{2}=24$
4. Explain what can be said about $\operatorname{det} A$ if:
(a) $A^{2}=A$

Solution: Let $A^{2}=A$, then $\operatorname{det}\left(A^{2}\right)=\operatorname{det} A$. But $\operatorname{det}\left(A^{2}\right)=(\operatorname{det} A)^{2}$.
Denote $x=\operatorname{det} A$ and solve $x^{2}=x$ for x. We get $x=0$ or $x=1$.
Thus if $A^{2}=A$ then $\operatorname{det} A$ can be either 0 or 1 .
(b) $A^{k}=0$ for some integer k. Here 0 is a zero matrix.

Solution: Let $A^{k}=0$, then $\operatorname{det} A^{k}=0$ for some k. This implies $(\operatorname{det} A)^{k}=0$, and so $\operatorname{det} A=0$.
(c) $A^{2}+I=0$

Solution: Let $A^{2}=-I$, then $\operatorname{det} A^{2}=\operatorname{det}(-I)$. There are two cases:
(1) the size of the matrices, n is even. Then $\operatorname{det}(-I)=1$. The equation becomes $(\operatorname{det} A)^{2}=1$ thus $\operatorname{det} A$ can be either 1 or -1 .
(2) the size of the matrices, n is odd. Then $\operatorname{det}(-I)=-1$. The equation becomes $(\operatorname{det} A)^{2}=-1$ thus $\operatorname{det} A$ can't be real number. (it is an imaginary number either i or $-i$).
(d) $A^{3}=A$

Solution: Let $A^{3}=A$, then $\operatorname{det}\left(A^{3}\right)=\operatorname{det} A$, or equivaletly, $(\operatorname{det} A)^{3}=\operatorname{det} A$. This implies that $\operatorname{det} A$ can be either 0 , or 1 or -1 .
(e) $A=A^{T}$

Solution: This condition implies that A is symmetric, but nothing more. Thus determinant of matrix A can have any number.
(f) $A^{-1}=A^{T}$

Solution: Let $A^{-1}=A^{T}$, then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A^{T}\right)$. Consequently, $\frac{1}{\operatorname{det} A}=\operatorname{det} A$. Thus $\operatorname{det} A^{2}=1$. We have: $\operatorname{det} A$ can be either 1 or -1 .
5. Let a square matrix A was obtained from a square matrix B by a series of elementary row operations. Is it true that $\operatorname{det} A=\operatorname{det} B$? Give an example supporting your answer.
Answer. NO. If switching of two rows or multiplication of a row by a number was employed, the determinant will in general be changed.
If only third EROs were used, then the determinant will not change.
6. Find all values a such that the matrix is invertable
(a) $\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & a \\ 2 & a & 1\end{array}\right]$

Solution:
$\operatorname{det}\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -1 & a \\ 2 & a & 1\end{array}\right]=a^{2}-4 a+3=(a-3)(a-1)$.
The determinant becomes zeto at $a=3$ or $a=1$, and this gives values of a when the matrix is not invertable. For all other values of a this matrix is invertable.
(b) $\left[\begin{array}{ccc}0 & a & -a \\ -1 & 1 & -1 \\ a & -a & a\end{array}\right]$

Solution:
$\operatorname{det}\left[\begin{array}{ccc}0 & a & -a \\ -1 & 1 & -1 \\ a & -a & a\end{array}\right]=0$
regardless of value of a.
Thus there is no such value a for which the matrix is invertable.

