1. For each of the following matrices find:
2. the matrix of cofactors;
3. the determinant using the cofactor (Laplace) expansion;
4. the inverse matrix using the cofactors;

$$
A=\left[\begin{array}{cc}
10 & 2 \\
5 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-5 & 7 & -11 \\
-2 & 3 & -5
\end{array}\right] . \quad C=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 \\
1 & 2 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right]
$$

2. Find the determinant by rewriting the matrix in a triangular form

$$
C=\left[\begin{array}{ccccc}
1 & 1 & -3 & 4 & 1 \\
-3 & -1 & 11 & -11 & -3 \\
1 & 2 & -3 & 7 & -2 \\
2 & 1 & -6 & 8 & 3 \\
-2 & 0 & 6 & -7 & 0
\end{array}\right]
$$

3. For which values of a the matrix $\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & a+1 & 0 \\ a & 2 & 4\end{array}\right]$ is not invertable?
4. Let $\operatorname{det} A=5$ and $\operatorname{det} B=10$.
A) Find $\operatorname{det}\left(B^{3} A^{2} B^{-1} A^{T} B^{T}\right)$.
B) Given $\operatorname{det}\left(5 A^{-1} B\right)=6250$ find the size of the matrices.
5. True of False? Explain.
a) If a matrix is skew symmetrix $\left(A^{T}=-A\right)$ then it is not invertable.
b) Every matrix such that $A^{k}=I$ for some $k \geq 1$ has determinant equal to one.
c) Elementary row operations do not change the determinant of the matrix. (in other words, if A is obtained from B by an ERO then $\operatorname{det} A=\operatorname{det} B$.)
d) There exist such matrices A, B, C for which $(A B C)^{-1}=A^{-1} B^{-1} C^{-1}$
