Due as follows:

Dr. Kondratieva	Tuesday October 26	in class or assignment box \#47
Dr. Goodaire	Wednesday October 27	10:00 a.m.
Dr. Yuan	Wednesday October 27	in class

[1] 1. (a) Suppose A and B are matrices such that $A B=0$. Does this imply $A=0$ or $B=0$? If you say "yes", give a proof; if you say "no", give an example of two nonzero matrices A and B for which $A B=0$.
(b) If A is a 2×2 matrix, $B=\left[\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right]$ and $A B=0$, show that $A=0$. Does this result contradict your answer to part (a)?
(c) If X and Y are any 2×2 matrices and B is the matrix of part (b), and if $X B=Y B$, show that $X=Y$.
[2] 2. It is conjectured that the points $\left(\frac{\pi}{3}, 2\right)$ and $\left(-\frac{\pi}{4}, 1\right)$ lie on a curve with equation of the form $y=a \sin x+b \cos x$. Assuming this is the case, write down a matrix equation whose solution is $\left[\begin{array}{l}a \\ b\end{array}\right]$.
[3] 3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & -1 \\ 5 & -2\end{array}\right]$. Compute $(A+B)^{2}$ and $A^{2}+2 A B+B^{2}$. Are these equal? What is the correct expansion of $(A+B)^{2}$?
[1] 4. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{rr}-1 & 1 \\ 0 & -1 \\ \frac{2}{3} & \frac{1}{3}\end{array}\right]$. Determine whether or not A and B are inverses.
[2] 5. Given that A is a 2×2 matrix and $\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]^{-1} A\left[\begin{array}{rr}5 & 1 \\ -1 & 1\end{array}\right]^{-1}=\left[\begin{array}{rr}-3 & 4 \\ 0 & 2\end{array}\right]$, find A.
[2] 6 . If A is any $n \times n$ matrix and x is a vector in R^{n}, what is the size of $\mathrm{x}^{T} A \mathrm{x}$ and why?
[2] 7. Find a formula for $\left((A B)^{T}\right)^{-1}$ in terms of $\left(A^{T}\right)^{-1}$ and $\left(B^{T}\right)^{-1}$.

