Due as follows:

Dr. Kondratieva	Tuesday October 26	in class or assignment box #47
Dr. Goodaire	Wednesday October 27	10:00 a.m.
Dr. Yuan	Wednesday October 27	in class

- [1] 1. (a) Suppose *A* and *B* are matrices such that AB = 0. Does this imply A = 0 or B = 0? If you say "yes", give a proof; if you say "no", give an example of two nonzero matrices *A* and *B* for which AB = 0.
- [2] (b) If *A* is a 2 × 2 matrix, $B = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ and AB = 0, show that A = 0. Does this result contradict your answer to part (a)?
- [1] (c) If *X* and *Y* are any 2×2 matrices and *B* is the matrix of part (b), and if XB = YB, show that X = Y.
- [2] 2. It is conjectured that the points $(\frac{\pi}{3}, 2)$ and $(-\frac{\pi}{4}, 1)$ lie on a curve with equation of the form $y = a \sin x + b \cos x$. Assuming this is the case, write down a matrix equation whose solution is $\begin{bmatrix} a \\ b \end{bmatrix}$.
- [3] 3. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 5 & -2 \end{bmatrix}$. Compute $(A + B)^2$ and $A^2 + 2AB + B^2$. Are these equal? What is the correct expansion of $(A + B)^2$?
- [1] 4. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$. Determine whether or not A and B are inverses.

[2] 5. Given that *A* is a 2 × 2 matrix and
$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}^{-1} A \begin{bmatrix} 5 & 1 \\ -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & 4 \\ 0 & 2 \end{bmatrix}$$
, find *A*.

- [2] 6. If *A* is any $n \times n$ matrix and x is a vector in \mathbb{R}^n , what is the size of $x^T A x$ and why?
- [2] 7. Find a formula for $((AB)^T)^{-1}$ in terms of $(A^T)^{-1}$ and $(B^T)^{-1}$.

[16]