MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6
MATH 2050
Answers.

1. For each of the following matrices find:
2. the matrix of cofactors;
3. the determinant using the cofactor (Laplace) expansion;
4. the inverse matrix using the cofactors;

$$
A=\left[\begin{array}{cc}
10 & 2 \\
5 & 4
\end{array}\right]
$$

1.The matrix of cofactors is $\left[\begin{array}{cc}4 & -5 \\ -2 & 10\end{array}\right]$.
2. $\operatorname{det} A=30$.
3. $A^{-1}=\frac{1}{30}\left[\begin{array}{cc}4 & -5 \\ -2 & 10\end{array}\right]^{T}=\frac{1}{30}\left[\begin{array}{cc}4 & -2 \\ -5 & 10\end{array}\right]$.

$$
B=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-5 & 7 & -11 \\
-2 & 3 & -5
\end{array}\right]
$$

1.The matrix of cofactors is $\left[\begin{array}{ccc}-2 & -3 & -1 \\ 1 & -1 & -1 \\ -3 & 1 & 2\end{array}\right]$.
2. $\operatorname{det} B=-1$.
3. $B^{-1}=\frac{1}{-1}\left[\begin{array}{ccc}-2 & -3 & -1 \\ 1 & -1 & -1 \\ -3 & 1 & 2\end{array}\right]^{T}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 3 & 1 & -1 \\ 1 & 1 & -2\end{array}\right]$.

$$
C=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 \\
1 & 2 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right]
$$

1.The matrix of cofactors is $\left[\begin{array}{cccc}0 & 0 & 0 & 24 \\ 0 & 0 & 32 & -24 \\ 0 & 48 & -32 & 0 \\ 24 & -12 & 0 & 0\end{array}\right]$.
2. $\operatorname{det} C=96$.
3. $C^{-1}=\frac{1}{96}\left[\begin{array}{cccc}0 & 0 & 0 & 24 \\ 0 & 0 & 32 & -24 \\ 0 & 48 & -32 & 0 \\ 24 & -12 & 0 & 0\end{array}\right]^{T}=\left[\begin{array}{cccc}0 & 0 & 0 & 1 / 4 \\ 0 & 0 & 1 / 2 & -1 / 8 \\ 0 & 1 / 3 & -1 / 3 & 0 \\ 1 / 4 & -1 / 4 & 0 & 0\end{array}\right]$.
2. Find the determinant by rewriting the matrix in a triangular form

$$
C=\left[\begin{array}{ccccc}
1 & 1 & -3 & 4 & 1 \\
-3 & -1 & 11 & -11 & -3 \\
1 & 2 & -3 & 7 & -2 \\
2 & 1 & -6 & 8 & 3 \\
-2 & 0 & 6 & -7 & 0
\end{array}\right]
$$

Solution: By performing the following EROs we rewrite the matrix in the upper triangular form. (Start as $R 2=R 2+3 R 1, R 3=R 3-R 1, R 4=R 4-2 R 1, R 5=R 5+2 R 1$, switch $R 2$ and R3,etc) Remembering that each switch changes the sign and each multiplication of a row by a number (like $\mathrm{R} 4=2^{*} \mathrm{R} 4$) changes the value of det, and then using that the det of a triangular matrix is the product of its diagonal elements, we obtain:
$\operatorname{det} C=-28$.
3. For which values of a the matrix $\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & a+1 & 0 \\ a & 2 & 4\end{array}\right]$ is not invertable?

Solution: A matrix A is not invertable if $\operatorname{det} A=0$.
We find: $\operatorname{det}\left[\begin{array}{ccc}2 & 1 & 3 \\ 0 & a+1 & 0 \\ a & 2 & 4\end{array}\right]=(a+1)(8-3 a)=0$.
Thus for $a=-1$ and $a=8 / 3$ the matrix is not invertable.
4. Let $\operatorname{det} A=5$ and $\operatorname{det} B=10$.
A) Find $\operatorname{det}\left(B^{3} A^{2} B^{-1} A^{T} B^{T}\right)$.

Solution: $\operatorname{det}\left(B^{3} A^{2} B^{-1} A^{T} B^{T}\right)=10^{3} \cdot 5^{2} \cdot \frac{1}{10} \cdot 5 \cdot 10=125,000$
B) Given $\operatorname{det}\left(5 A^{-1} B\right)=6250$ find the size of the matrices.

Solution: Assume that A is $n \times n$-matrix. Then $5^{n} \cdot \frac{1}{5} \cdot 10=6250$. Solving for n we find $n=5$.
5. True of False? Explain.
a) If a matrix is skew symmetrix $\left(A^{T}=-A\right)$ then it is not invertable.

Solution: False. For example, $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is skew symmetric and invertable.
b) Every matrix such that $A^{k}=I$ for some $k \geq 1$ has determinant equal to one.

Solution: False. For example, $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$ has determinant -1 and its square is the identity.
c) Elementary row operations do not change the determinant of the matrix. (in other words, if A is obtained from B by an ERO then $\operatorname{det} A=\operatorname{det} B$.)

Solution: False. For example, switching two rows changes the sign of the determinant.
d) There exist such matrices A, B, C for which $(A B C)^{-1}=A^{-1} B^{-1} C^{-1}$

Solution: True. This is not true in general, but as a special case such matrices do exist. For example, if $A=C$ and is invertable, then $A^{-1}=C^{-1}$ and we have

$$
(A B C)^{-1}=C^{-1} B^{-1} A^{-1}=A^{-1} B^{-1} C^{-1}
$$

