Assignment 5
MATH 2050
Due: Friday May 22

1. Find the inverse of each of the following matrices or explain why it is not possible.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
10 & 2 \\
5 & 4
\end{array}\right], \quad B=\left[\begin{array}{cc}
10 & 2 \\
5 & 1
\end{array}\right] . \quad C=\left[\begin{array}{ccc}
2 & -1 & 3 \\
3 & 1 & -1 \\
1 & 1 & -2
\end{array}\right], \\
D=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-5 & 7 & -11 \\
-2 & 3 & -5
\end{array}\right] . \quad F=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad G=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
3 & 3 & 3
\end{array}\right] .
\end{gathered}
$$

2. Solve the system of equations by writing it in the form $A X=B$ and finding A^{-1}. Check your answer.
(a) $\left\{\begin{array}{l}x-7 y=11 \\ -x+2 y=-1\end{array}\right.$
(b) $\left\{\begin{array}{l}10 x+15 y=5 \\ 101 x+203 y=102\end{array}\right.$
(c) $\left\{\begin{array}{l}2 x-y+3 z=3 \\ 3 x+y-z=-2 \\ x+y-2 z=0\end{array}\right.$
(d) $\left\{\begin{array}{l}2 x-y+3 z=0 \\ 3 x+y-z=11 \\ x+y-2 z=7\end{array}\right.$
3. Explain why each of the following matrices is elementary. Find its inverse in the easy way.
$A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 10\end{array}\right], C=\left[\begin{array}{llll}1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], D=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1\end{array}\right]$,
4. True of False? Explain.
a) If a matrix has an inverse then it must be a square matrix.
b) Every square matrix is invertable.
c) There exists a non-invertable elementary matrix.
d) If matrix A is invertable then the system $A X=B$ has a unique solution for any vector-column B.
