1. Which of the following pairs of matrices are inverses of each other?

$$
\begin{array}{rl}
\text { a) } A & A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\frac{1}{2}\left[\begin{array}{ccc}
-4 & 2 & 1 \\
3 & -1 & 0
\end{array}\right] . \\
\text { b) } A=\left[\begin{array}{lll}
0 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=\frac{1}{3}\left[\begin{array}{ccc}
-3 & 6 & -3 \\
6 & -21 & 12 \\
-3 & 14 & -8
\end{array}\right] . \\
\text { c) } A & A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] .
\end{array}
$$

2. Solve the system of equations by writing it in the form $A X=B$ and finding A^{-1}.
(a) $\left\{\begin{array}{l}4 x+7 y=2 \\ x+2 y=-1\end{array}\right.$
(b) $\left\{\begin{array}{l}x-2 y+2 z=3 \\ x+z=-2 \\ 2 x+y+z=0\end{array}\right.$
(c) $\left\{\begin{array}{l}y-z=8 \\ x+2 y+z=5 \\ x+z=-7\end{array}\right.$
3. Show that for any invertable square matrices A and B the following is true

$$
\left((A B)^{T}\right)^{-1}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}
$$

4. Let A be a symmetric $n \times n$-matrix, and X, Y be matrices of the size $n \times 1$ and $1 \times n$ respectively. Show that

$$
(Y A X)^{-1}=\left(X^{T} A Y^{T}\right)^{-1}
$$

