1. Find the inverse of each of the following matrices or explain why it is not possible.

$$
A=\left[\begin{array}{cc}
10 & 2 \\
5 & 4
\end{array}\right], \quad A^{-1}=\frac{1}{30}\left[\begin{array}{cc}
4 & -2 \\
-5 & 10
\end{array}\right]
$$

$B=\left[\begin{array}{cc}10 & 2 \\ 5 & 1\end{array}\right] \quad \operatorname{det} B=0$ thus the inverse does not exist.

$$
\begin{array}{ll}
C=\left[\begin{array}{ccc}
2 & -1 & 3 \\
3 & 1 & -1 \\
1 & 1 & -2
\end{array}\right], & C^{-1}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-5 & 7 & -11 \\
-2 & 3 & -5
\end{array}\right] \\
D=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-5 & 7 & -11 \\
-2 & 3 & -5
\end{array}\right], & D^{-1}=\left[\begin{array}{ccc}
2 & -1 & 3 \\
3 & 1 & -1 \\
1 & 1 & -2
\end{array}\right]
\end{array}
$$

Noticed that $C^{-1}=D$ and $D^{-1}=C$. They are inverses of each other!
$F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$, this is not a square matrix so the inverse does not exist.
$G=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 3 & 3 & 3\end{array}\right] \cdot G^{-1}$ does not exist. (we can't make the identity matrix in the first block.)
2. Solve the system of equations by writing it in the form $A X=B$ and finding A^{-1}. Check your answer.
(a) $\left\{\begin{array}{l}x-7 y=11 \\ -x+2 y=-1\end{array}\right.$
$\left[\begin{array}{l}x \\ y\end{array}\right]=-\frac{1}{5}\left[\begin{array}{ll}2 & 7 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}11 \\ -1\end{array}\right]=\left[\begin{array}{l}-3 \\ -2\end{array}\right]$
(b) $\left\{\begin{array}{l}10 x+15 y=5 \\ 101 x+203 y=102\end{array}\right.$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{515}\left[\begin{array}{cc}203 & -15 \\ -101 & 10\end{array}\right]\left[\begin{array}{c}5 \\ 102\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
(c) $\left\{\begin{array}{l}2 x-y+3 z=3 \\ 3 x+y-z=-2 \\ x+y-2 z=0\end{array}\right.$

Use the inverse matrix C^{-1} from problem 1 to find
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 2 \\ -5 & 7 & -11 \\ -2 & 3 & -5\end{array}\right]\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right]=\left[\begin{array}{c}5 \\ -29 \\ -12\end{array}\right]$
(d) $\left\{\begin{array}{l}2 x-y+3 z=0 \\ 3 x+y-z=11 \\ x+y-2 z=7\end{array}\right.$

Use the inverse matrix C^{-1} from problem 1 to find

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-5 & 7 & -11 \\
-2 & 3 & -5
\end{array}\right]\left[\begin{array}{c}
0 \\
11 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right]
$$

3. Explain why each of the following matrices is elementary. Find its inverse in the easy way.
$A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, This matrix is obtained from the identity matrix by switching rows 2 and 3 . Its inverse is the same as the matrix is : $A^{-1}=A$.

$$
B=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 10
\end{array}\right],
$$

This matrix is obtained from the identity matrix by multiplying row 4 by 10. Its inverse is : $B^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0.1\end{array}\right]$,
$C=\left[\begin{array}{llll}1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
This matrix is obtained from the identity matrix by replacing row 1 with row 1 plus 4 times row 3. (R1:= R1+4R3)
Its inverse is : $C^{-1}\left[\begin{array}{cccc}1 & 0 & -4 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,
$D=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -3 & 0 & 0 & 1\end{array}\right]$,
This matrix is obtained from the identity matrix by replacing row 4 with row 4 minus 3 times row 1. (R4:= R4-3R1)

Its inverse is : $D^{-1}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1\end{array}\right]$
4. True of False? Explain.
a) If a matrix has an inverse then it must be a square matrix. True
b) Every square matrix is invertable. False
c) There exists a non-invertable elementary matrix. False
d) If matrix A is invertable then the system $A X=B$ has a unique solution for any vector-column B. True (assuming the dimension is right).

