1. Find the inverse of each of the following matrices or explain why it is not possible.
$A=\left[\begin{array}{cc}10 & 20 \\ 2 & 4\end{array}\right] . \operatorname{det} A=0$ thus the inverse matrix does not exist.
$B=\left[\begin{array}{cc}10 & 20 \\ 5 & 4\end{array}\right] . \operatorname{det} B=-60 ; B^{-1}=-\frac{1}{60}\left[\begin{array}{cc}4 & -20 \\ -5 & 10\end{array}\right]$
$C=\left[\begin{array}{ccc}3 & -5 & 1 \\ 5 & -10 & 5 \\ 2 & 0 & -1\end{array}\right], C^{-1}=\frac{1}{5}\left[\begin{array}{ccc}-2 & 1 & 3 \\ -3 & 1 & 2 \\ -4 & 2 & 1\end{array}\right]$.
$D=\left[\begin{array}{lll}-2 & 1 & 3 \\ -3 & 1 & 2 \\ -4 & 2 & 1\end{array}\right], D^{-1}=\frac{1}{5}\left[\begin{array}{ccc}3 & -5 & 1 \\ 5 & -10 & 5 \\ 2 & 0 & -1\end{array}\right]$.
$F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 2 & 2\end{array}\right]$, This is not a square matrix thus it is not invertable.
$G=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 3\end{array}\right]$. This matrix is not invertable.
2. Solve the system of equations by writing it in the form $A X=B$ and finding $A^{-1}$. Check your answer.
Hint: you can use your result obtained in problem 1 if appropriate.
(a) $\left\{\begin{array}{l}2 x-5 y=-14 \\ -x+2 y=5\end{array}\right.$
$A=\left[\begin{array}{cc}2 & -5 \\ -1 & 2\end{array}\right] ; A^{-1}=(-1)\left[\begin{array}{ll}2 & 5 \\ 1 & 2\end{array}\right] ;\left[\begin{array}{l}x \\ y\end{array}\right]=(-1)\left[\begin{array}{ll}2 & 5 \\ 1 & 2\end{array}\right]\left[\begin{array}{c}-14 \\ 5\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
Answer: $x=3, y=4$
(b) $\left\{\begin{array}{c}-2 x+13 y=24 \\ 11 x+23 y=35\end{array}\right.$

Answer: $x=-1, y=2$
(c) $\left\{\begin{array}{l}-2 x+y+3 z=-1 \\ -3 x+y+2 z=-3 \\ -4 x+2 y+1 z=-2\end{array}\right.$

Answer: $x=2, y=3, z=0$
(d) $\left\{\begin{array}{l}-2 x+y+3 z=1 \\ -3 x+y+2 z=-1 \\ -4 x+2 y+1 z=-3\end{array}\right.$

Answer: $x=1, y=0, z=1$
3. Explain why each of the following matrices is elementary. Find its inverse in the easy way.
$A=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right], A^{-1}=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
$B=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 2^{k} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right], B^{-1}=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 2^{-k} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
$C=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -5 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] . C^{-1}=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$.
4. Explain in your words, using the definition of inverse matrix and/or examples of your choice, why each of the following statements is true.
a) If a matrix has an inverse then it must be a square matrix.
the only way to respect the dimentions in multiplication $A A^{-1}$ and $A^{-1} A$ and receive the same identity matrix I is to have both $A$ and $A^{-1}$ square matrices of the same size.
b) Not any square matrix is invertable.

Matrices A and G in problem 1 are square but not invertable; their determinant is zero.
c) Every elementary matrix is invertable.

One can always undo the "do".
d) If matrix $A$ is invertable then the system $A X=B$ has a unique solution for any vector-column $B$.
this solution is $X=A^{-1} B$ (as illustrated in problem 2).

