1. Which of the following pairs of matrices are inverses of each other?

$$
\text { a) } \quad A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\frac{1}{2}\left[\begin{array}{ccc}
-4 & 2 & 1 \\
3 & -1 & 0
\end{array}\right] \text {. }
$$

Answer. To be inverses of each other two matrices must be of the same square size and give the identity matrix when multiplied in any order. Sinse the product $B A$ is undefined these two matrices are not inverses of each other.

$$
\text { b) } \quad A=\left[\begin{array}{lll}
0 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=\frac{1}{3}\left[\begin{array}{ccc}
-3 & 6 & -3 \\
6 & -21 & 12 \\
-3 & 14 & -8
\end{array}\right] \text {. }
$$

Answer. Here $A B=B A=I$, thus these two matrices are inverses of each other.

$$
\text { c) } \quad A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \text {. }
$$

Answer. Here $A B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, which is not the identity. Thus these two matrices are not inverses of each other.
2. Solve the system of equations by writing it in the form $A X=B$ and finding A^{-1}.
(a) $\left\{\begin{array}{l}4 x+7 y=2 \\ x+2 y=-1\end{array}\right.$

Solution. $A=\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right], B=\left[\begin{array}{c}2 \\ -1\end{array}\right] ;$
$A^{-1}=\left[\begin{array}{cc}2 & -7 \\ -1 & 4\end{array}\right] ; X=A^{-1} B=\left[\begin{array}{c}11 \\ -6\end{array}\right]$.
Answer: $x=11, y=-6$.
(b) $\left\{\begin{array}{l}x-2 y+2 z=3 \\ x+z=-2 \\ 2 x+y+z=0\end{array}\right.$

Solution. $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{c}3 \\ -2 \\ 0\end{array}\right] ;$

By a series of EROs we transform 3×6-matrix $[A \mid I]$ to $[I \mid *]$:

$$
\left[\begin{array}{cccccc}
1 & -2 & 2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -4 & 2 \\
0 & 1 & 0 & -1 & 3 & -1 \\
0 & 0 & 1 & -1 & 5 & -2
\end{array}\right]
$$

and find the inverse of A in place of $*$-block.
$A^{-1}=\left[\begin{array}{ccc}1 & -4 & 2 \\ -1 & 3 & -1 \\ -1 & 5 & -2\end{array}\right]$; then $X=A^{-1} B=\left[\begin{array}{c}11 \\ -9 \\ -13\end{array}\right]$.
Answer: $x=11, y=-9, z=-13$.
(c) $\left\{\begin{array}{l}y-z=8 \\ x+2 y+z=5 \\ x+z=-7\end{array}\right.$

Solution. $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 0 & 1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], B=\left[\begin{array}{c}8 \\ 5 \\ -7\end{array}\right]$;
$A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}2 & -1 & 3 \\ 0 & 1 & -1 \\ -2 & 1 & -1\end{array}\right] ; X=A^{-1} B=\left[\begin{array}{c}-5 \\ 6 \\ -2\end{array}\right]$.
Answer: $x=-5, y=6, z=-2$.
3. Show that for any invertable square matrices A and B the following is true

$$
\left((A B)^{T}\right)^{-1}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}
$$

Solution. We use that $(A B)^{T}=B^{T} A^{T}$ and then $(C D)^{-1}=D^{-1} C^{-1}$ for any matrices such that all the operations are defined.
Thus,

$$
\left((A B)^{T}\right)^{-1}=\left(B^{T} A^{T}\right)^{-1}=\left(A^{T}\right)^{-1}\left(B^{T}\right)^{-1}
$$

4. Let A be a symmetric $n \times n$-matrix, and X, Y be matrices of the size $n \times 1$ and $1 \times n$ respectively. Show that

$$
(Y A X)^{-1}=\left(X^{T} A Y^{T}\right)^{-1}
$$

Solution One. Consider case $n=2$. Take arbitrary symmetric 2×2-matrix $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$, and $X=\left[\begin{array}{l}d \\ e\end{array}\right], Y=\left[\begin{array}{ll}f & h\end{array}\right]$; then $X^{T}=\left[\begin{array}{ll}d & e\end{array}\right], Y^{T}=\left[\begin{array}{l}f \\ h\end{array}\right]$.
Calculate $Y A X=d f a+d h b+f e b+h e c$. Similarly, $X^{T} A Y^{T}=d f a+d h b+f e b+h e c$, which is the same algebraic expresion. Thus their reciprocals $(Y A X)^{-1}$ and $\left(X^{T} A Y^{T}\right)^{-1}$ are also equal (or both undefined if the number turned to be zero).

It remains to think hard and observe that since A is symmetric (equivalently, $A_{i j}=A_{j i}$) then for arbitrary n the number

$$
Y A X=\sum_{i=1}^{n} \sum_{j=1}^{n} Y_{i} A_{i j} X_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} A_{i j} Y_{j}=X^{T} A Y^{T}
$$

Thus, the reciprocals are equal.

Solution Two. Matrix A is symmetric, which means that $A=A^{T}$. Thus,

$$
X^{T} A Y^{T}=X^{T} A^{T} Y^{T}=(Y A X)^{T}=Y A X
$$

The last equality is true since $Y A X$ is always 1×1 matrix, which is just a number; its transposition gives the number itself.
Again, since numbers $Y A X$ and $X^{T} A Y^{T}$ are equal, their reciprocals are as well.

