1. Find matrix A if

$$
4 A-\left[\begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \\
-1 & 7
\end{array}\right]-2 A
$$

2. A square matrix B is called skew-symmetric if $B^{T}=-B$. Let A be a square matrix. Show that $B=A-A^{T}$ is skew-symmetric.
3. Consited matrices

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 2 & 1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
0 & 2 & -3 & 1 & 5 \\
-1 & 0 & 2 & 1 & 4
\end{array}\right], \quad C=\left[\begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array}\right] .
$$

Find the following products if they are defined

$$
A B, \quad A C, \quad C A, \quad A B^{T}, \quad A^{T} B, \quad A^{2}, \quad B^{2}, \quad C^{2}
$$

4. The trace of a square matrix A, denoted $\operatorname{tr} A$, is the sum of the elements on the main diagonal of A. Show that if A and B are $n \times n$ matrices then

$$
\operatorname{tr}^{\mathrm{T}}=\operatorname{tr} \mathrm{A}, \quad \operatorname{tr}(\mathrm{~A}+\mathrm{B})=\operatorname{tr} \mathrm{A}+\operatorname{tr} \mathrm{B}, \quad \operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA}) .
$$

5. Write the following system of linear equations in the form $A X=B$

$$
x_{1}-x_{2}+3 x_{3}=4, \quad x_{2}+10 x_{3}=-4, \quad 20 x_{1}-x_{3}=0 \quad, x_{4}=1,
$$

namely, identify matrices A, X, B and their dimentions.
6. Given agmented matrix of coefficients of a homogeneous system find the basic solutions and write the parametric solution in the vector form

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 1 \\
0 & 0 & 2 & -6 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

7. Compose a word problem whose solution leads to matrix multiplication.
