Assignment No. 4

MATHEMATICS 2050

Due as follows:

		Dr. KondratievaTHURSDAY October 14in class or assignment boxDr. GoodaireWednesday October 1310:00 a.m.
		Dr. Yuan Wednesday October 13 in class
[2]	1. (a) Suppose $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is a vector in the plane spanned by nonparallel vectors u and v. Show that any scalar multiple of x lies in the same plane.
[2]	(b) Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ be a vector in the plane π whose equation is $ax + by + cz = 0$. Show that any scalar multiple of \mathbf{x} is also in π .
[2] [2]		a) Find the distance from $P(1,1,1)$ to the plane π with equation $x - 3y + 4z = 10$. b) Find the point of π which is closest to $(1,1,1)$. (See Exercise 5 in Section 1.4.)
[2]		a) Find two orthogonal vectors in the plane π with equation $2x - y + z = 0$.
[2]	(b) Use your answer to part (a) to find the projection of $w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ on π .
	4. Le	et ℓ_1 and ℓ_2 be the lines with equations
		$\ell_1: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}, \qquad \ell_2: \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$
[3]	(a) Show that ℓ_1 and ℓ_2 are not parallel and that they do not intersect.
[3]		b) There is a plane containing ℓ_1 and parallel to ℓ_2 . Find the equation of this plane.
[1]		etermine, with justification, whether or not $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$ is a linear combination of $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$
		$\begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -1 \\ -2 \\ -3 \\ -4 \\ -5 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 4 \\ 5 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \text{ and } \mathbf{v}_5 = \begin{bmatrix} 5 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$

[19]