Due as follows:

Dr. Kondratieva	THURSDAY October 14	in class or assignment box
Dr. Goodaire	Wednesday October 13	10:00 a.m.
Dr. Yuan	Wednesday October 13	in class

[2] 1. (a) Suppose $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is a vector in the plane spanned by nonparallel vectors u and v. Show that any scalar multiple of x lies in the same plane.
(b) Let $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ be a vector in the plane π whose equation is $a x+b y+c z=0$. Show that any scalar multiple of x is also in π.
2. (a) Find the distance from $P(1,1,1)$ to the plane π with equation $x-3 y+4 z=10$.
(b) Find the point of π which is closest to ($1,1,1$). (See Exercise 5 in Section 1.4.)
3. (a) Find two orthogonal vectors in the plane π with equation $2 x-y+z=0$.
(b) Use your answer to part (a) to find the projection of $w=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ on π.
4. Let ℓ_{1} and ℓ_{2} be the lines with equations

$$
\ell_{1}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{r}
2 \\
1 \\
-3
\end{array}\right], \quad \ell_{2}:\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
4 \\
1 \\
-2
\end{array}\right]+t\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] .
$$

(a) Show that ℓ_{1} and ℓ_{2} are not parallel and that they do not intersect.
(b) There is a plane containing ℓ_{1} and parallel to ℓ_{2}. Find the equation of this plane.
5. Determine, with justification, whether or not $v=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right]$ is a linear combination of $v_{1}=$ $\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 1 \\ 2\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4 \\ 5 \\ 1\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{l}-1 \\ -2 \\ -3 \\ -4 \\ -5\end{array}\right], \mathrm{v}_{4}=\left[\begin{array}{l}4 \\ 5 \\ 1 \\ 2 \\ 3\end{array}\right]$, and $\mathrm{v}_{5}=\left[\begin{array}{l}5 \\ 1 \\ 2 \\ 3 \\ 4\end{array}\right]$.

