1. Find matrix A if

$$
\left[\begin{array}{cc}
5 & 1 \\
0 & -2
\end{array}\right]-2 A=\left[\begin{array}{cc}
-3 & 2 \\
-1 & 7
\end{array}\right]+A^{T}
$$

Answer: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then we have

$$
3 a=8, \quad 2 b+c=-1, \quad 2 c+b=1, \quad 3 d=-9 .
$$

Solving the system we find the matrix $A=\left[\begin{array}{cc}8 / 3 & -1 \\ 1 & -3\end{array}\right]$.
2. Let A, B, C be symmetric matrices. Determine whether $A+B+C$ is symmetric. What about $A B C$?
Answer: We have $A=A^{T}, B=B^{T}, C=C^{T}$. Thus

$$
(A+B+C)^{T}=A^{T}+B^{T}+C^{T}=(A+B+C)
$$

Therefore matrix $A+B+C$ is symmetric.

$$
(A B C)^{T}=C^{T} B^{T} A^{T}=C B A \neq A B C
$$

Therefore ABC in not symmetric in general. (It may be symmetric for some special choices of A,B,C.)
3. Consited matrices

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & 2 \\
1 & 0 & -1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 2 & -3 \\
-1 & 0 & 2
\end{array}\right], \quad C=\left[\begin{array}{lll}
3 & 2 & 0
\end{array}\right] .
$$

Find the following products if they are defined

$$
A B, \quad A C, \quad C A, \quad A B^{T}, \quad A^{T} B, \quad A^{2}, \quad B^{2}, \quad C^{2}
$$

Answer: The following products are undefined: $A B, A C, A^{T} B, B^{2}, C^{2}$. The rest of them are: $C A=\left[\begin{array}{lll}3 & 6 & 13\end{array}\right], A B^{T}=\left[\begin{array}{cc}-5 & 5 \\ -6 & 4 \\ 3 & -3\end{array}\right], A^{2}=\left[\begin{array}{ccc}4 & 2 & 4 \\ 2 & 0 & -2 \\ 0 & 2 & 4\end{array}\right]$.
4. A square matrix P is called idempotent if $P^{2}=P$. Show that if P is idempotent and I is a unit matrix then $(I-P)^{2}$ is also idempotent.
Answer:

$$
(I-P)^{2}=(I-P)(I-P)=I-2 P+P^{2}=I-2 P+P=I-P
$$

Therefore matrix $I-P$ is idempotent.
Bonus: Show that $P+A P-P A P$ is idempotent given that P is idempotent, and A is any square matric of the same size as P.
Answer:
$(P+A P-P A P)^{2}=P^{2}+A P^{2}-P A P^{2}+P A P+A P A P-P A P A P-P^{2} A P-A P^{2} A P+P A P^{2} A P$
Replacing P^{2} with P and canceling similar terms we get

$$
(P+A P-P A P)^{2}=P+A P-P A P
$$

Therefore matrix $P+A P-P A P$ is idempotent.
5. Write the following system of linear equations in the form $A X=B$
$5 x_{1}-6 x_{2}-2 x_{3}-7=0, \quad 2 x_{1}+17 x_{3}+14=0, \quad 20 x_{1}+x_{2}-x_{4}-10=0, \quad x_{2}+x_{4}-1=0, \quad x_{1}+x_{5}=0$
namely, identify matrices A, X, B and their dimentions.
Answer: $A=\left[\begin{array}{ccccc}5 & -6 & -2 & 0 & 0 \\ 2 & 0 & 17 & 0 & 0 \\ 20 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right], B=\left[\begin{array}{c}7 \\ -14 \\ 10 \\ 1 \\ 0\end{array}\right]$.
6. Given augmented matrix for a homogeneous system of linear equations find the basic solutions and write the parametric solution in the vector form

$$
\left[\begin{array}{cccccc|c}
1 & -2 & 3 & -4 & 5 & -1 & 0 \\
0 & 0 & 0 & 5 & 7 & 1 & 0 \\
0 & 0 & 0 & 0 & 4 & 12 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Answer: $X=q\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}32 \\ 0 \\ 0 \\ 4 \\ -3 \\ 1\end{array}\right]$, where q, s, t are any independently chosen numbers.
7. Compose a word problem whose solution leads to matrix multiplication.

