1. Consider augmented matrix for a homogeneous system of linear equations.
1.1 Rewrite the problem in the matrix form $A X=B$ (identify matrices A, X and B, and their dimentions).
1.2 Find the basic solutions and write the parametric solution in the vector form.
(a)

$$
\left[\begin{array}{cccccc|c}
1 & 3 & -1 & 4 & 1 & 5 & 0 \\
0 & 0 & 1 & 3 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 5 & 15 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution

1.1 Matrix form is $A X=B$, where

$$
A=\left[\begin{array}{cccccc}
1 & 3 & -1 & 4 & 1 & 5 \\
0 & 0 & 1 & 3 & 2 & 4 \\
0 & 0 & 0 & 0 & 5 & 15
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Here A is 3×6-matrix, X is 6×1-matrix (column-vector), and B is 3×1-matrix (column-vector).
1.2 The augmented matrix can be made in REF by deviding row 3 by 5 . The rank of the matrix of coefficients is 3 , thus paramentric solution has $6-3=3$ parameters. Let $x_{6}=t, x_{4}=s, x_{2}=q$. Then the solution in the vector form is as follows:

$$
X=q\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-7 \\
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
0 \\
2 \\
0 \\
-3 \\
1
\end{array}\right]
$$

Basic vectors-solutions are:

$$
\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-7 \\
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
0 \\
2 \\
0 \\
-3 \\
1
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{ccccc|c}
1 & 3 & -1 & 4 & 1 & 0 \\
2 & 6 & -2 & 3 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Solution: 1.1 Matrix form is $A X=B$, where

$$
A=\left[\begin{array}{lllll}
1 & 3 & -1 & 4 & 1 \\
2 & 6 & -2 & 3 & 2
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Here A is 2×5-matrix, X is 5×1-matrix (column-vector), and B is 2×1-matrix (column-vector).
1.2 The augmented matrix can be made in REF by subtracting from row- 2 two of row-1 ($R 2:=R 2-2 R 1$). The rank of the matrix of coefficients is 2 , thus paramentric solution has $5-2=3$ parameters. From the second equation in REF it follow that $x_{4}=0$
Let $x_{5}=t, x_{3}=s, x_{2}=q$. Then the solution in the vector form is as follows:

$$
X=q\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Basic vectors-solutions are:

$$
\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad s\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

2. Write the system of linear equations $\left\{\begin{array}{l}5 x_{2}-2 x_{6}-1=0 \\ 2 x_{1}+17 x_{4}+10=0 \\ 20 x_{3}+x_{5}-6=0\end{array}\right.$ in the form $A X=B$, namely, identify matrices A, X, B and their dimentions. Find the parametric solution and write it in the vector form.
Solution: Matrix form is $A X=B$, where

$$
A=\left[\begin{array}{cccccc}
0 & 5 & 0 & 0 & 0 & -2 \\
2 & 0 & 0 & 17 & 0 & 0 \\
0 & 0 & 20 & 0 & 1 & 0
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad B=\left[\begin{array}{c}
1 \\
-10 \\
6
\end{array}\right]
$$

Here A is 3×6-matrix, X is 6×1-matrix (column-vector), and B is 3×1-matrix (columnvector).
We can find parametric solution of the system:

$$
x_{6}=t, \quad x_{4}=s, \quad x_{3}=q, \quad x_{5}=6-20 q, x_{2}=\frac{1+2 t}{5}, \quad x_{1}=-\frac{10+17 s}{2} .
$$

Then the solution is the vector form is:

$$
X=\left[\begin{array}{c}
-5 \\
0.2 \\
0 \\
0 \\
6 \\
0
\end{array}\right]+s\left[\begin{array}{c}
17 / 2 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
0.4 \\
0 \\
0 \\
0 \\
1
\end{array}\right]+q\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-20 \\
0
\end{array}\right]
$$

3. Find matrix A if

$$
3\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 4 & -2
\end{array}\right]^{T}+2 A=\left[\begin{array}{cc}
-2 & 1 \\
-1 & 7 \\
0 & 5
\end{array}\right]
$$

Answer: $A=\left[\begin{array}{cc}-2.5 & -1 \\ -2 & -2.5 \\ 0 & 5.5\end{array}\right]$
4. Give a definition and an example of each:
(a) diagonal matrix,

Answer: only main diagonal may contain non-zero element.
(b) non-square matrix,

Answer: number of rows differs from number of columns.
(c) symmetric matrix,

Answer: does not change after transposition $A^{T}=A$.
(d) skew-symmetric matrix,

Answer: changes the sign after transposition $A^{T}=-A$.
(e) idempotent matrix,

Answer: does not change after multiplication by itself: $A A=A$.
(f) identity marix.

Answer: a square matrix with all 1 on the main diagonal.
5. Let A, B be symmetric matrices, and C, D skew-symmetric matrices. Determine if the following is symmetric, skew symmetric or neither:

$$
A+B, \quad A+C, \quad D+C, \quad A+B+C, \quad A B, \quad A C, \quad C D, \quad C+C^{T} .
$$

Answer:
$A+B$ is symmetric;
$A+C$ is neither;
$D+C$ is skew-symmetric;
$A+B+C$ is neither;
$A B$ is neither;
$A C$ is neither;
$C D$ is neither;
$C+C^{T}$ is BOTH (because the result is zero matrix);
6. Consider matrices

$$
A=\left[\begin{array}{ccc}
0 & 2 & 3 \\
1 & 0 & 2 \\
1 & 0 & -1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & 2 & -3 \\
-1 & 0 & 2
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right] .
$$

Find the following products if they are defined

$$
B A, \quad A C^{T} A, \quad A^{T} B^{T}, \quad A^{T} B, \quad A^{2}, \quad B^{2}, \quad C^{2}
$$

Answers: $B A=\left[\begin{array}{ccc}-1 & 0 & 7 \\ 2 & -2 & -5\end{array}\right], A^{T} B^{T}=(B A)^{T}=\left[\begin{array}{cc}-1 & 2 \\ 0 & -2 \\ 7 & -5\end{array}\right]$,
$A^{2}=A A=\left[\begin{array}{ccc}5 & 0 & 1 \\ 2 & 2 & 1 \\ -1 & 2 & 4\end{array}\right]$.
Other combinations are undefined.
7. Compose a word problem whose solution leads to matrix multiplication.

