1. Find matrix A if

$$
4 A-\left[\begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
-3 & 2 \\
-1 & 7
\end{array}\right]-2 A
$$

Answer

$$
6 A=\left[\begin{array}{cc}
0 & 4 \\
-2 & 7
\end{array}\right] \quad \rightarrow \quad A=\left[\begin{array}{cc}
0 & 2 / 3 \\
-1 / 3 & 7 / 6
\end{array}\right] .
$$

2. A square matrix B is called skew-symmetric if $B^{T}=-B$. Let A be a square matrix. Show that $B=A-A^{T}$ is skew-symmetric.
Solution: Calculate $B^{T}=\left(A-A^{T}\right)^{T}=A^{T}-\left(A^{T}\right)^{T}=A^{T}-A=-\left(A-A^{T}\right)=-B$. Thus, by dfinition, B is skew-symmetric.
3. Consited matrices

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 2 & 1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccccc}
0 & 2 & -3 & 1 & 5 \\
-1 & 0 & 2 & 1 & 4
\end{array}\right], \quad C=\left[\begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array}\right] .
$$

Find the following products if they are defined

$$
A B, \quad A C, \quad C A, \quad A B^{T}, \quad A^{T} B, \quad A^{2}, \quad B^{2}, \quad C^{2}
$$

Answer $A B, A C, A^{2}, B^{2}$ are undefined.

$$
\left.\begin{array}{rl}
C A & =\left[\begin{array}{cccc}
3 & 6 & 13 & 14 \\
-1 & -2 & -3 & -4
\end{array}\right. \\
-5
\end{array}\right], \quad A B^{T}=\left[\begin{array}{cc}
24 & 29 \\
15 & 21
\end{array}\right], \quad C^{2}=\left[\begin{array}{cc}
7 & 6 \\
-3 & -2
\end{array}\right], ~\left[\begin{array}{ccccc}
0 & 2 & -3 & 1 & 5 \\
0 & 4 & -6 & 2 & 10 \\
-2 & 6 & -5 & 5 & 23 \\
-1 & 8 & -10 & 5 & 24 \\
-4 & 10 & -7 & 9 & 41
\end{array}\right] \quad . \quad \begin{aligned}
& A^{T} B
\end{aligned}
$$

4. The trace of a square matrix A, denoted $\operatorname{tr} A$, is the sum of the elements on the main diagonal of A. Show that if A and B are $n \times n$ matrices then

$$
\operatorname{tr} \mathrm{A}^{\mathrm{T}}=\operatorname{tr} \mathrm{A}, \quad \operatorname{tr}(\mathrm{~A}+\mathrm{B})=\operatorname{tr} \mathrm{A}+\operatorname{tr} \mathrm{B}, \quad \operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA}),
$$

Solution

1. Note that after transposition the main diagonal of a matrix remains the same. Thus, the sum of the elements on the main diagonal is the same for both A and A^{T}.
2. By definition, $(A+B)_{i j}=A_{i j}+B_{i j}$ for all $i, j=1,2, \ldots n$. In particular, for the diagonal elements we have $(A+B)_{j j}=A_{j j}+B_{j j}$ for all $j=1,2, \ldots n$. Thus

$$
\operatorname{tr}(\mathrm{A}+\mathrm{B})=\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathrm{~A}_{\mathrm{jj}}+\mathrm{B}_{\mathrm{jj}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{jj}}+\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~B}_{\mathrm{jj}}=\operatorname{tr} \mathrm{A}+\operatorname{trB} .
$$

3. Let at first $n=3$, so we are dialing with 3×3 matrices A and B. Introduce $C=A B$ and $D=B A$. Then the diagonal elements of C and D are

$$
C_{j j}=A_{j 1} B_{1 j}+A_{j 2} B_{2 j}+A_{j 3} B_{3 j}=\sum_{i=1}^{3} A_{j i} B_{i j}, \quad D_{j j}=\sum_{i=1}^{3} B_{j i} A_{i j}, \quad j=1,2,3
$$

Then

$$
\operatorname{tr} \mathrm{AB}=\operatorname{trC}=\mathrm{C}_{11}+\mathrm{C}_{22}+\mathrm{C}_{33}=\sum_{\mathrm{j}=1}^{3} \mathrm{C}_{\mathrm{jj}}=\sum_{\mathrm{j}=1}^{3} \sum_{\mathrm{i}=1}^{3} \mathrm{~A}_{\mathrm{ji}} \mathrm{~B}_{\mathrm{ij}} .
$$

and

$$
\operatorname{trBA}=\operatorname{trD}=\sum_{\mathrm{j}=1}^{3} \mathrm{D}_{\mathrm{jj}}=\sum_{\mathrm{j}=1}^{3} \sum_{\mathrm{i}=1}^{3} \mathrm{~B}_{\mathrm{ji}} \mathrm{~A}_{\mathrm{ij}} .
$$

Each sum above contains 9 terms, and if you compare them, you find that they are the same:

$$
A_{11} B_{11}+A_{12} B_{21}+A_{13} B_{31}+A_{21} B_{12}+A_{22} B_{22}+A_{23} B_{32}+A_{31} B_{13}+A_{32} B_{23}+A_{33} B_{33} .
$$

Thus we have it proven for $n=3$.
With a little harder work, the same can be proven for arbitrary n.
5. Write the following system of linear equations in the form $A X=B$

$$
x_{1}-x_{2}+3 x_{3}=4, \quad x_{2}+10 x_{3}=-4, \quad 20 x_{1}-x_{3}=0 \quad, x_{4}=1,
$$

namely, identify matrices A, X, B and their dimentions.
Answer

$$
A=\left[\begin{array}{cccc}
1 & -1 & 3 & 0 \\
0 & 1 & 10 & 0 \\
20 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad B=\left[\begin{array}{c}
4 \\
-4 \\
0 \\
1
\end{array}\right]
$$

6. Given agmented matrix of coefficients of a homogeneous system find the basic solutions and write the parametric solution in the vector form

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 1 \\
0 & 0 & 2 & -6 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Answer:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{c}
-13 \\
0 \\
3 \\
1 \\
0 \\
0
\end{array}\right] q+\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0 \\
1 \\
0
\end{array}\right] r+\left[\begin{array}{c}
2 \\
0 \\
-1 \\
0 \\
0 \\
1
\end{array}\right] s .
$$

7. Compose a word problem whose solution leads to matrix multiplication.
