Due as follows:

Dr. Kondratieva	Tuesday October 5	in class or assignment box
Dr. Goodaire	Wednesday October 6	10:00 a.m.
Dr. Yuan	Wednesday October 6	in class

[2] 1. Find the equation of the plane parallel to the plane with equation $18 x+6 y-5 z=0$ and passing through the point $(-1,1,7)$.
[2] 2. Find the equation of the plane passing through $A(-1,2,1), B(0,1,1)$, and $C(7,-3,0)$.
[3] 3. Show that the lines with vector equations

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-1 \\
4 \\
4
\end{array}\right]+t\left[\begin{array}{r}
-1 \\
5 \\
2
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
1 \\
-6 \\
0
\end{array}\right]+t\left[\begin{array}{r}
2 \\
-10 \\
-4
\end{array}\right]
$$

are the same.
4. Let ℓ be the line with vector equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}2 \\ -3 \\ -4\end{array}\right]+t\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and let π be the plane with equation $3 x-4 y+z=18$.
(a) Give an easy reason why ℓ and π must intersect.
(b) Find the point of intersection of ℓ and π.
[2] 5. Let $u=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $v=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Find the projection of u on v and the projection of v on u.
6. Let P be the point $(-1,2,1)$ and ℓ the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+t\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Find the distance from P to ℓ.

