
Assignment No. 3 MATHEMATICS 2050 Fall 2004

Due as follows:

Dr. Kondratieva Tuesday October 5 in class or assignment box

Dr. Goodaire Wednesday October 6 10:00 a.m.

Dr. Yuan Wednesday October 6 in class

[2] 1. Find the equation of the plane parallel to the plane with equation 18x + 6y − 5z = 0

and passing through the point (−1,1,7).

[2] 2. Find the equation of the plane passing through A(−1,2,1), B(0,1,1), and C(7,−3,0).

[3] 3. Show that the lines with vector equations
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are the same.

4. Let ℓ be the line with vector equation
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 and let π be the plane with

equation 3x − 4y + z = 18.

[1] (a) Give an easy reason why ℓ and π must intersect.

[2] (b) Find the point of intersection of ℓ and π .
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 . Find the projection of u on v and the projection of v on u.

[3] 6. Let P be the point (−1,2,1) and ℓ the line with equation
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distance from P to ℓ.
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