Assignment No. 2

MATHEMATICS 2050

Due as follows:

Dr. Kondratieva	Tuesday September 28	in class or assignment box
Dr. Goodaire	Wednesday September 29	9:50 a.m.
Dr. Yuan	Wednesday September 29	in class

- [2] 1. Let u and v be vectors of lengths 3 and 5 respectively with $u \cdot v = 8$. Find $(-3u + 4v) \cdot (2u + 5v)$.
- [2] 2. Let $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$. Find a vector of length 2 with the same direction as \mathbf{v} and a vector of length 6 with direction opposite \mathbf{v} .
- [2] 3. Find the angle between $u = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ and $v = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}$. Give your answer in radians to two decimal place accuracy, and in degrees to the nearest degree.
- [2] 4. Let $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$. Find a real number k so that $\mathbf{u} + k\mathbf{v}$ is orthogonal to \mathbf{u} , if such k exists.
- [3] 5. Let A(1,2), B(-3,-1) and C(4,-2) be three points in the Euclidean plane. Find a fourth point *D* such that the *A*, *B*, *C*, *D* are the vertices of a square **and justify your answer**.

[2] 6. Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$. Show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} .

[3] 7. Let $\mathbf{u} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4 \\ -1 \\ -1 \end{bmatrix}$. Find $a\mathbf{u} + b\mathbf{v}$. Then find the equation of the plane that consists of all such linear combinations of \mathbf{u} and \mathbf{v} .

[16]

© MMIV E. G. Goodaire, Mathematics and Statistics, Memorial University

September 20, 2004