Due as follows:

Dr. Kondratieva	Tuesday September 28	in class or assignment box
Dr. Goodaire	Wednesday September 29	9:50 a.m.
Dr. Yuan	Wednesday September 29	in class

[2] 1. Let u and v be vectors of lengths 3 and 5 respectively with $u \cdot v=8$.
Find $(-3 u+4 v) \cdot(2 u+5 v)$.
[2] 2. Let $v=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$. Find a vector of length 2 with the same direction as v and a vector of length 6 with direction opposite v .
[2] 3. Find the angle between $u=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $v=\left[\begin{array}{r}-4 \\ -1 \\ 1\end{array}\right]$. Give your answer in radians to two decimal place accuracy, and in degrees to the nearest degree.
[2] 4. Let $u=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$ and $v=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$. Find a real number k so that $u+k v$ is orthogonal to u, if such k exists.
[3] 5. Let $A(1,2), B(-3,-1)$ and $C(4,-2)$ be three points in the Euclidean plane. Find a fourth point D such that the A, B, C, D are the vertices of a square and justify your answer.
[2] 6. Let $\mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$. Show that $\mathbf{u} \times v$ is orthogonal to \mathbf{u}.
[3] 7. Let $u=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{r}4 \\ -1 \\ -1\end{array}\right]$. Find $a u+b v$. Then find the equation of the plane that consists of all such linear combinations of u and v.

