1. Margo has 1.05 dollars in dimes nickels, and pennies. If there are 17 coins in all, how many coins of each type can she have?
Answer: Let d be the number of dimes, n - number of nickels, and p - number of pennies that Margo has. Then we have the following system of linear equations

$$
p+n+d=17, \quad p+5 n+10 d=105
$$

with the restriction that the solutions must be all non-negative integers. There are two sets of such solutions: $p=5, n=4, d=8$ and $p=0, n=13, d=4$. Thus the answer is: Margo has either 8 dimes 4 nickels, and 5 pennies or 4 dimes 13 nickels, and no pennies.
2. Solve the given systems by reduction corresponding Augmented Matrix to Row-Echelon Form (REF). Find the rank of the matrix of coefficients.
(a) $\left\{\begin{array}{l}x+y+z=2 \\ x+z=1 \\ 2 x+5 y+2 z=7\end{array}\right.$

Answer: The system in REF is $\left[\begin{array}{lll|l}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$; rank is 2; The solution

$$
x=1-t, \quad y=1, \quad z=t,
$$

where t is any number.
(b) $\left\{\begin{array}{l}5 x+y=2 \\ 3 x-y+2 z=1 \\ x+y-z=6\end{array}\right.$

Answer: REF is $\left[\begin{array}{ccc|c}1 & 1 & -1 & 6 \\ 0 & 1 & -5 / 4 & 17 / 4 \\ 0 & 0 & 0 & 11\end{array}\right]$. The rank is 2 ; the system is inconsistent (last equation reads $0=11$). There are no solutions.
(c) $\left\{\begin{array}{l}x+y+2 z=8 \\ x-3 y-4 z=4 \\ 3 x-y+z=0\end{array}\right.$

Answer: From REF we conclude that Rank is 3 . The system has unique solution $x=17, y=31, z=-20$.
3. In each of the following find conditions for a, b, c such that the system has no solutions, a unique solution, or infinitly many solutions.
(a) $\left\{\begin{array}{l}x-y+2 z=a \\ 3 x+y-z=b \\ 5 x+3 y-4 z=c\end{array}\right.$

Answer: When the system is written in the REF the last equation reads: $0=a-2 b+c$. Thus for $a-2 b+c \neq 0$ there are no solutions. For $a-2 b+c=0$ there are infinitly many solutions. A unique solution is not possible for that system.
(b) $\left\{\begin{array}{l}x+a y=0 \\ y+b z=0 \\ z+c x=0\end{array}\right.$

Answer: When the system is written in REF the last equation reads: $(a b c+1) z=0$. Thus if $a b c \neq-1$ the system has a unique solution $x=y=z=0$. If $a b c=-1$ the system has infinitly many solutions. Since the system is homogeneous is is impossible for it to have no solutions.
(c) $\left\{\begin{array}{l}3 x-y+2 z=3 \\ x+y-z=2 \\ 2 x-2 y+3 z=b\end{array}\right.$

Answer: From REF we conclude that when $b \neq 1$ there are no solutions; when $b=1$ there are infinitly many solutions. A unique solution is not possible for that system.
4. Find all solutions to the following system in parametric form in two ways. Use sample value of parameter to obtain a particular numeric solution from one of the forms. Then find value of parameter in another form that yield the same numeric solution.
$\left\{\begin{array}{l}x+y+z=2 \\ x+y-z=3\end{array}\right.$
Answer: By adding and subtracting the equations, the system can be rewritten as $\left\{\begin{array}{l}x+y=5 / 2 \\ z=-1 / 2\end{array}\right.$ Then the first way to write its parametric solution is $x=t, y=5 / 2-t$, $z=-1 / 2$. Another way is $x=5 / 2-s, y=s, z=-1 / 2$. Then point $x=0, y=5 / 2$, $z=-1 / 2$ corresponds to the choice $t=0$ or $s=5 / 2$.
5. (Partial fraction decomposition): Find a, b, c such that

$$
\frac{9 x^{2}+4 x+7}{\left(x^{2}+2\right)(2 x-1)}=\frac{a x+b}{x^{2}+2}+\frac{c}{2 x-1} .
$$

Answer: Add two fractions in the right hand side to have a common denominator and set the coefficients of x^{2}, x and free terms of the nominators equal. This leads to the system $\left\{\begin{array}{l}2 a+c=9 \\ 2 b-a=4 \\ 2 c-b=7\end{array}\right.$ Solving the system we find $a=2, b=3, c=5$.

