1. Find all solutions to the following in parametric form in two ways. Use sample value(s) of parameter(s) to obtain a particular numeric solution from one of the forms. Then find value(s) of parameter(s) in another form that yield the same numeric solution.
(a) $4 x-y=2$

Solution

First way: $y=t, x=1 / 2+t / 4, t$ is a real number;
Second way: $x=s, y=4 s-2, s$ is a real number;
Let $t=0$. Thet first parametric form gives point $(1 / 2,0)$. This point corresponds to $s=1 / 2$ in the second parametric form.
(b) $\left\{\begin{array}{l}x+y+z=2 \\ x-y-z=3\end{array}\right.$

Solution
By adding two equations we get $2 x=5$; By subtracting them we get $2 y+2 z=-1$. Thus parametric solution is:
First way: $x=5 / 2, y=t, z=-1 / 2-t, t$ is a real number;
Second way: $x=5 / 2, y=-1 / 2-s, z=s, s$ is a real number;
Let $t=0$. Thet first parametric form gives point $(5 / 2,0,-1 / 2)$. This point corresponds to $s=-1 / 2$ in the second parametric form.
2. Show that the system of 3 equations $x+2 y-z=a, 2 x+y+3 z=b, x-4 y+9 z=c$ has no solutions unless $c=2 b-3 a$. In the latter case, how many solutions does the system have?
Solution In the augmented matrix form the system can be written as $\left[\begin{array}{ccc|c}1 & 2 & -1 & a \\ 2 & 1 & 3 & b \\ 1 & -4 & 9 & c\end{array}\right]$. Reduce it by EROs $R_{2}:=R_{2}-2 R_{1}, R_{3}:=R_{3}-R_{1}, R_{3}:=R_{3}-2 R_{2}$ to REF

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & a \\
0 & -3 & 5 & b-2 a \\
0 & 0 & 0 & c+3 a-2 b
\end{array}\right]
$$

From the last row we conclude that the system has solutions only if $c+3 b-2 a=0$.
In this case it will have an infinitly many solutions (each for each value of parameter t) $z=t, y=(-b+2 a+5 t) / 3, x=-3 a+2 b / 3-7 t / 3$.
3. (Partial fraction decomposition): Find a, b, c such that

$$
\frac{x^{2}-x+3}{\left(x^{2}+2\right)(2 x-1)}=\frac{a x+b}{x^{2}+2}+\frac{c}{2 x-1} .
$$

(see hint in Text, Q.1.1.15)

Solution

$x^{2}-x+3=(a x+b)(2 x-1)+c\left(x^{2}+2\right) \quad \rightarrow \quad x^{2}-x+3=(2 a+c) x^{2}+(2 b-a) x+2 c-b$
Equating coefficients of x^{2}, x and the constant terms we get a system of linear equations for $a, b, c: 2 a+c=1,2 b-a=-1,2 c-b=3$. Solving the system we get $a=-1 / 9$, $b=-5 / 9, c=11 / 9$.
4. Solve the given systems by reduction corresponding Augmented Matrix to Reduced RowEchelon Form (REF).
(a) $\left\{\begin{array}{l}x+y+2 z=-1 \\ 2 x+y+3 z=0 \\ -2 y+z=2\end{array}\right.$

Solution

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & -1 \\
2 & 1 & 3 & 0 \\
0 & -2 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 5 / 3 \\
0 & 1 & 0 & -4 / 3 \\
0 & 0 & 1 & -2 / 3
\end{array}\right]
$$

Thus the answer is $x=5 / 3, y=-4 / 3, z=-2 / 3$.
(b) $\left\{\begin{array}{l}5 x+y=2 \\ 3 x-y+2 z=1 \\ x+y-z=5\end{array}\right.$

Solution

$$
\left[\begin{array}{ccc|c}
5 & 1 & 0 & 2 \\
3 & -1 & 2 & 1 \\
1 & 1 & -1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & -1 & 5 \\
0 & -4 & 5 & -14 \\
0 & 0 & 0 & 9
\end{array}\right]
$$

The last equation $0=9$ can't be satisfied. Thus there are no solutions.
5. Carry each of the following matrices to Reduced REF
(a) $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccccccc}1 & -1 & 2 & 1 & 2 & 1 & -1 \\ 0 & 1 & -2 & 2 & 7 & 2 & 4 \\ 0 & -2 & 4 & 3 & 7 & 1 & 0 \\ 0 & 3 & -6 & 1 & 6 & 4 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccccccc}1 & -1 & 2 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{cccc}2 & 1 & -1 & 3 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 1 / 2 & -1 / 2 & 3 / 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{cccc}1 & -2 & 3 & 5 \\ 0 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -2 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(e) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

