1. Find all solutions for the following systems of linear equations by writing the solution in parametric form. How many parameters are in the solution?
(a) $\left\{\begin{array}{l}x+y-z=2 \\ x-y=0\end{array}\right.$

Solution: From the second equation we find that $x=y$. Thus if x is chosen arbitrary, say $x=t$ then $y=t$ as well. Substitute this values in the first equation to get $2 t-z=2$. Thus $z=2 t-2$. Finally, we write the answer in the form $\left\{\begin{array}{l}x=t \\ y=t \\ z=2 t-2,\end{array}\right.$ where t is any number.
There is one parameter, t.
(b) $\left\{\begin{array}{l}x+2 y-3 z=4 \\ x-2 y=1\end{array}\right.$

Solution: From the second equation we find that $x=2 y+1$. Thus if y is chosen arbitrary, say $y=t$ then $x=2 t+1$. Substitute this values in the first equation to get $(2 t+1)+2 t-3 z=4$. Thus $3 z=4 t-3$. Finally, we write the answer in the form $\left\{\begin{array}{l}x=2 t+1 \\ y=t \\ z=(4 t-3) / 3,\end{array}\right.$ where t is any number.
There is one parameter, t.
(c) $\left\{\begin{array}{l}x+2 y-3 z+u=4 \\ x+z=0\end{array}\right.$

Solution: From the second equation we find that $x=-z$. Thus if z is chosen arbitrary, say $z=t$ then $x=-t$. Substitute this values in the first equation to get $-t+2 y-3 t+$ $u=4$. We still have freedom to choose, or example, $y=s$. Then $-4 t+2 s+u=4$. Thus $u=4+4 t-2 s$. Finally, we write the answer in the form $\left\{\begin{array}{l}x=-t \\ y=s \\ z=t \\ u=4+4 t-2 s,\end{array}\right.$ where t and s are any numbers.
There are two parameters, t and s.
(d) $x+y+z+u+v+10=0$.

Solution: We can arbitrary choose values of four variables and the remaining variables will be defined by them. For example, $\left\{\begin{array}{l}x=t \\ y=s \\ z=q \\ u=r \\ v=-10-t-s-q-r,\end{array} \quad\right.$ where t, s, q, r are any numbers.
There are four parameters, t, s, q, r.
2. Solve each of the systems algebraically and geometrically (or argue that it does not have a solution). Write the augmented matrix corresponding to each of the systems.
(a) $\left\{\begin{array}{l}x+2 y=1 \\ x+1=0 \\ y-1=0\end{array}\right.$

Answer: Algebraic solution gives $x=-1, y=1$.
Geometric solution comes from graphing three lines: $y=(1-x) / 2, x=-1, y=1$, and observing that they all intersect at point $(-1,1)$.
Augmented matrix is $\left[\begin{array}{rr|r}1 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$
(b) $\left\{\begin{array}{l}x+2 y=3 \\ 10 y+5 x=30\end{array}\right.$

Answer:
Algebraic solution leads to the conclution that the system is inconsistent (no such pair (x, y) is possible).
Geometric solution comes from graphing two lines: $y=(3-x) / 2=-x / 2+3 / 2$, $y=-x / 2+3$, and observing that they are parallel, and thus there is no point of intersection.
Augmented matrix is $\left[\begin{array}{rr|r}1 & 2 & 3 \\ 5 & 10 & 30\end{array}\right]$
(c) $\left\{\begin{array}{l}x+2 y=1 \\ x-1=0 \\ y+1=0\end{array}\right.$

Answer:
Algebraic solution leads to the conclution that the system is inconsistent (no such pair (x, y) is possible).
Geometric solution comes from graphing three lines: $y=(1-x) / 2, x=1, y=-1$, and observing that there is no common point of intersection.
Augmented matrix is $\left[\begin{array}{rr|r}1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right]$
(d) $\left\{\begin{array}{l}x+2 y=1 \\ x-2 y=1\end{array}\right.$

Answer:
Algebraic solution gives $x=1, y=0$.
Geometric solution comes from graphing two lines: $y=(1-x) / 2, y=(x-1) / 2$, and observing that they intersect at point $(1,0)$.
Augmented matrix is $\left[\begin{array}{rr|r}1 & 2 & 1 \\ 1 & -2 & 1\end{array}\right]$
3. Write a linear system corresponding to the given augmented matrix.
$\left[\begin{array}{rrrrr|r}6 & 2 & -3 & 4 & 1 & 0 \\ 5 & 0 & 0 & 1 & 200 & 2\end{array}\right]$
Answer:
$\left\{\begin{array}{l}6 x+2 y-3 z+4 u+5 v=0 \\ 5 x+u+200 v=2\end{array}\right.$
4. Give an example of a system of three linear equations in two variables that has infinitely many solutions.
Answer:
$\left\{\begin{array}{l}x+y=1 \\ 2 x+2 y=2 \\ 3 x+3 y=3\end{array}\right.$
such a system has parametric solution $\left\{\begin{array}{l}x=t \\ y=1-t,\end{array}\right.$ where t is arbitrary number. This gives infinitly many solutions.
5. In order to cook a party-style pizza Margo needs 10 mushrooms and 3 large tomatoes. For a casual-style pizza she needs 5 mushrooms and 2 large tomatoes. Given that 200 mushrooms and 70 large tomatoes were consumed in a cooking, find how many pizzas of each style were cooked by Margo.
Solution: Let x be the number of party-style pizzas and y be the number of casual-style pizzas. Then we have system of linear equations $\left\{\begin{array}{l}10 x+5 y=200 \\ 3 x+2 y=70\end{array}\right.$ Solving the system we have $x=10, y=20$.
Thus the answer is: Margo cooked 10 party-style pizzas and 20 casual-style pizzas, and thus she must have been exhausted!
6. Compose your own word problem that requires solution of a system of linear equations. Solve the problem.

