1. Find all solutions for the following problems by writing the solution in parametric form
(a) $20 x-y=10$

Answer: Note that there are two ways to write answer to this questions. One way to write the answer is: $x=t, y=20 t-10$, where t is any real number.
(b) $10 x+3 y+5 z=6$

Answer: $z=t, y=s, x=(-3 s-5 t) / 10$, where t, s are any real numbers.
(c) $a x+b y+c z+d w=e$, where a, b, c, d are nonzero constants.

Answer: $w=r, z=t, y=s, x=(e-b s-c t-d r) / a$, where r, t, s are any real numbers.
2. Solve each of the systems algebraically and geometrically (or argue that it does not have a solution). Write the augmented matrix corresponding to each of the systems.
(a) $x+y+4=0$
$9 x-3 y=0$
Solution.
Algebraic: Substutite $x=-4-y$, found from the first equation, into the second equation to get $-9(4+y)-3 y=0$; thus $-12 y=36 ; y=-3$. So, $x=-1$. Answer: $x=-1 ; y=-3$.
Geometric solution: graph of the first equation is a line $y=-4-x$ with slope -1 and y-intersept at $(0,-4)$; graph of the second equation is a line $y=3 x$ with slope 3 passing through the origin. The two lines intersect at point $(-1,-3)$. Thus the answer is $x=-1 ; y=-3$.
(b) $2 x+y=3$
$3 x-y=2$
$20 x-30 y=-10$
Answer. Algebraic: $x=1, y=1$ sutisfies all three equations.
Geometric: Graph of each equation is a line. All three lines intersect at point $(1,1)$.
(c) $2 x+y=3$
$3 x-y=2$
$20 x-30 y=-1$
Answer. Algebraic: There is no such number x and y which satisfy all three equations. Thus there is no solution.
Geometric: Graph of each equation is a line, but there is no an intersection point common to all three lines. Thus there is no solution.
(d) $2 x+y=3$
$2 y+4 x=6$
Answer. Algebraic: The second equation is obtained from the first by multiplication of every number by 2 . Thus the two equations have the same set of solutions. The solution in the parametric form can be written as $x=t, y=3-2 t$, where t is any number.
Geometric: Graphs of both equations give the same line, $y=3-2 x$. All point on that line are solutions. Each particular t in the parametric solution gives one point from this line. For example, $t=0$ gives point $(0,3)$. Equivalently, $x=0, y=3$ is one of the infinitly many solutions to the system.
3. Write a linear system corresponding to the given augmented matrix.
(a) $\left[\begin{array}{rr|r}4 & 12 & 16 \\ 3 & -9 & -1\end{array}\right]$

Answer. $\left\{\begin{array}{l}4 x+12 y=16 \\ 3 x-9 y=-1\end{array}\right.$
(b) $\left[\begin{array}{rrrr|r}-1 & 2 & -3 & 4 & 5 \\ 0 & -10 & 0 & 1 & 100\end{array}\right]$

Answer.
4. Margo needs 42 mg of vitamin A and 65 mg of vitamin D per day. She has two supplements: the first contains 10% vitamin A and 25% vitamin D; the second contains 20% vitamin A and 25% vitamin D. How much of each supplement should she eat each day?
Solution. Suppose that Margo eats $x \mathrm{mg}$ of supplement one and $y \mathrm{mg}$ of supplement two per day. Then she gets $(0.1 x+0.2 y) \mathrm{mg}$ of vitamin A and $(0.25 x+0.25 y) \mathrm{mg}$ of vitamin D. Since Margo needs 42 mg of A and 65 mg of D , we have a system of linear equations for x and y :

$$
\left\{\begin{array}{l}
0.1 x+0.2 y=42 \\
0.25 x+0.25 y=65
\end{array}\right.
$$

Solving the system we find $x=100$ and $y=160$.
Answer. Margo should eat 100 mg of supplement one and 160 mg of supplement two per day.
5. Compose your own word problem that requires solution of a system of linear equations. Solve the problem.

