## Due as follows:

| Dr. Kondratieva | Tuesday November 16 | in class or assignment box \#47 |
| :--- | :--- | :--- |
| Dr. Goodaire | Wednesday November 17 | 10:00 a.m. |
| Dr. Yuan | Wednesday November 17 | in class |

[2] 1. Suppose that $A$ and $P$ are $n \times n$ matrices and $A$ is symmetric. Prove that $P^{T} A P$ is symmetric.
[3] 2. Find an LDU factorization of the symmetric matrix $A=\left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$.
[4] 3. Determine whether or not each of the following matrices has an inverse and find the inverse whenever this exists.
(a) $\left[\begin{array}{rrr}0 & -1 & 2 \\ 2 & 1 & 4 \\ 1 & -1 & 5\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1\end{array}\right]$
[3]
4. Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}\right]$ and $C=\left[\begin{array}{ll}5 & 3 \\ 2 & 2\end{array}\right]$.

Given that $B$ is a $2 \times 2$ matrix and that $A B C^{-1}=I$, the identity matrix, find $B$.
[1] 5. (a) Given two $n \times n$ matrices $X$ and $Y$, how do you determine whether or not $Y=$ $X^{-1}$ ?

Let $A$ be an $n \times n$ matrix and let $I$ denote the $n \times n$ identity matrix.
(b) If $A^{3}=0$, verify that $(I-A)^{-1}=I+A+A^{2}$.
(c) Use part (c) to find the inverse of $\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$.

