Due as follows:

Dr. Kondratieva	Tuesday November 9	in class or assignment box \#47
Dr. Goodaire	Wednesday November 10	10:00 a.m.
Dr. Yuan	Wednesday November 10	in class

$x+y-z=a$

1. Find a condition on a, b, and c in order that the system $\begin{aligned} 2 x-3 y+5 z & =b \text { have a } \\ 5 x+2 z & =c\end{aligned}$ solution. If there is a solution, is this unique? Explain.
[3] 2. Let $\mathrm{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{l}4 \\ 2 \\ 2\end{array}\right], \mathrm{v}_{4}=\left[\begin{array}{c}1 \\ 1 \\ 13\end{array}\right]$. Determine whether these vectors are linearly independent or linearly dependent. If they are linearly dependent, write down a nontrivial linear combination of the vectors which equals the zero vector.
2. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 8 & 9\end{array}\right]$. Write down an elementary matrix E so that $E A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & -3 & -6 \\ 6 & 8 & 9\end{array}\right]$.
[1] 4. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1\end{array}\right]$. Find A^{-1} without calculation and explain your reasoning.
[3] 5. Find an LU and an LDU factorization of $A=\left[\begin{array}{rrr}-2 & 4 & 6 \\ 1 & 2 & -8 \\ 4 & 0 & -5\end{array}\right]$.
3. Let $A=\left[\begin{array}{rrr}1 & 6 & 7 \\ 5 & 25 & 36 \\ -2 & -27 & -4\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ 5 & 1 & 0 \\ -2 & 3 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 6 & 7 \\ 0 & -5 & 1 \\ 0 & 0 & 7\end{array}\right]=L U$.
(a) Use the given factorization of A to solve the linear system $A \mathrm{x}=\mathrm{b}$, where $\mathrm{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(b) Express b as a linear combination of the columns of A.
