Due as follows:

Dr. Kondratieva	Tuesday November 2	in class or assignment box \#47
Dr. Goodaire	Wednesday November 3	10:00 a.m.
Dr. Yuan	Wednesday November 3	in class

[2] 1. Suppose A is an $n \times n$ matrix such that $A+A^{2}=I$. Show that A is invertible.
[2] 2. If A and B are matrices with both $A B$ and B invertible, prove that A is invertible.
3. Solve each of the following systems of linear equations by Gaussian elimination and back substitution. Write your answers as vectors or as linear combinations of vectors if appropriate.
(a) $2 x-y+2 z=-4$
$3 x+2 y=1$
$x+3 y-6 z=5$
(b) $x+y+7 z=2$
$2 x-4 y+14 z=-1$
$5 x+11 y-7 z=8$
$2 x+5 y-4 z=-3$
[3]
(c) $2 x_{1}+2 x_{2}+2 x_{3}-8 x_{4}=1$
$4 x_{1}+6 x_{2}+6 x_{3}=4$
$6 x_{1}+6 x_{2}+10 x_{3}-4 x_{4}=2$
(d) $x-y+2 z=4$
[3]
[3]
(e) $2 x_{1}-7 x_{2}+x_{3}+x_{4}=0$
$x_{1}-2 x_{2}+x_{3}=0$
$3 x_{1}+6 x_{2}+7 x_{3}-4 x_{4}=0$
(f) $2 x_{1}-3 x_{2}+4 x_{3}-x_{4}=5$
$-x_{1}+x_{2}+x_{4}=-1$
$2 x_{2}-x_{3}-3 x_{4}=1$
$3 x_{1}+x_{3}+4 x_{4}=7$
[3]
4. Determine whether or not $\left[\begin{array}{r}2 \\ -11 \\ -3\end{array}\right]$ is a linear combination of the columns of $A=\left[\begin{array}{rr}0 & -1 \\ -1 & 4 \\ 5 & 9\end{array}\right]$.

