This assignment is a collection of problems from the last part of the course. It covers material you must know for the final examination, but is not to be turned in for credit. Solutions will be posted during the last week of the semester.

1. Consider the system of equations $\begin{aligned} x_{2}-x_{3} & =8 \\ x_{1}+2 x_{2}+x_{3} & =5\end{aligned}$

$$
x_{1}+x_{3}=-7
$$

i. Write this in the form $A \mathrm{x}=\mathrm{b}$.
ii. Solve the system by finding A^{-1}.
iii. Express $\left[\begin{array}{r}8 \\ 5 \\ -7\end{array}\right]$ as a linear combination of the vectors $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$.
2. Express $\left[\begin{array}{rrr}0 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & -5 & 2\end{array}\right]$ as the product of elementary matrices.
3. Let $A=\left[\begin{array}{rrr}-1 & 2 & 4 \\ 0 & 3 & 5 \\ 2 & -2 & 3\end{array}\right]$.
(a) Find the matrix M of minors, find the matrix C of cofactors and compute the product $A C^{T}$.
(b) Find $\operatorname{det} A$.
(c) If A is invertible, find A^{-1}.
4. Suppose A is a 2×2 matrix with $\operatorname{det} A=5$ and cofactor matrix $C=\left[\begin{array}{rr}3 & 1 \\ -2 & 1\end{array}\right]$. What is A ?
5. Let $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 3 & 1 & 1 \\ 2 & -1 & 3\end{array}\right]$.

Find the determinant of A expanding by cofactors of the second column.
6. If A and B are 3×3 matrices, $\operatorname{det} A=2$ and $\operatorname{det} B=-5$, find $\operatorname{det} A^{T} B^{-1} A^{3}(-B)$.
7. Let $B=\left[\begin{array}{rrr}1 & 2 & 1 \\ 3 & -2 & 0 \\ -1 & 4 & 1\end{array}\right]$.
(a) Find det $B, \operatorname{det} \frac{1}{3} B$ and $\operatorname{det} B^{-1}$.
(b) Suppose A is a matrix whose inverse is B. Find the cofactor matrix of A.
8. Find $\left|\begin{array}{rrrrr}1 & 0 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & 1 \\ 2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 \\ 0 & 1 & 0 & 1 & 0\end{array}\right|$ by reducing to upper triangular form.
9. Let $A=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ u & v & w\end{array}\right]$ and suppose $\operatorname{det} A=5$. Find $\left|\begin{array}{ccc}2 p & -a+u & 3 u \\ 2 q & -b+v & 3 v \\ 2 r & -c+w & 3 w\end{array}\right|$.
10. Let $A=\left[\begin{array}{lll}5 & -7 & 7 \\ 4 & -3 & 4 \\ 4 & -1 & 2\end{array}\right] ; \mathrm{v}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right], \mathrm{v}_{4}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right], \mathrm{v}_{5}=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$ and $\mathrm{v}_{6}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Determine whether or not the given vectors v_{i} are eigenvectors of A. Justify your answers.
11. Find the characteristic polynomial and the (real) eigenvalues and corresponding eigenspaces of each of the following matrices.
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$
(b) $\left[\begin{array}{rrr}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]$
12. If x is an eigenvector of an invertible matrix A corresponding to λ, show that x is also an eigenvector of A^{-1}. What is the corresponding eigenvalue?

