
M2320-Assignment 6: Solutions
Problem 1: (Section 6.1 Exercise 14) How many integers between 1 and 1000 (exclusive)

are not divisible by 2, 3, 5, or 7?
Solution:
(a.)

Let A, B, C, and D be the sets of integers between 1 and 1000(inclusive) which are
divisible by 2, by 3, by 5, and by 7, respectively. We want |(A ∪B ∪ C ∪D)c|. Now

|A ∪B ∪C ∪D| = |A|+ |B|+ |C|+ |D| − |A ∩B| − |A ∩C| − |A ∩D| − |B ∩C| − |B ∩
D| − |C ∩D|+ |A ∩B ∩ C|+ |A ∩B ∩D|+ |A ∩ C ∩D|+ |B ∩ C ∩D| − |A ∩B ∩ C ∩D|

We have
|A| = b1000

2
c = 500 |B| = b1000

3
c = 333 |C| = b1000

5
c = 200 |D| = b1000

7
c = 142

|A ∩B| = b1000
6
c = 166 |A ∩ C| = b1000

10
c = 100 |A ∩D| = b1000

14
c = 71

|B ∩ C| = b1000
15
c = 66 |B ∩D| = b1000

21
c = 47 |C ∩D| = b1000

35
c = 28

|A ∩B ∩ C| = b1000
30
c = 33 |A ∩B ∩D| = b1000

42
c = 23

|A ∩ C ∩D| = b1000
70
c = 14 |B ∩ C ∩D| = b1000

105
c = 9

|A ∩B ∩ C ∩D| = b1000

210
c = 4

.
So |A ∪B ∪ C ∪D| = 772. Our answer is 1000− 772 = 228.

(b.)
Now 1 and 1000 must be excluded. Since 1 is not divisible by 2, 3, 4 or 7 while 1000 is

divisible by 5, the answer is 228− 1 = 227.

Problem 2: (Section 6.1 Exercise 15) Find the number of integers between 1 and 10, 000
inclusive which are:

(a.) divisible by at least one of 3, 5, 7, 11;

(b.) divisible by 3 and 5, but not by either 7 or 11;

(c.) divisible by exactly three of 3, 5, 7, 11;

(d.) divisible by at most three of 3, 5, 7, 11;

Solution:
Let A, B, C, and D be the sets of integers between 1 and 10, 000(inclusive) which are

divisible by 3, by 5, by 7,and by 11 respectively. We have



|A| = b10000
3
c = 3333 |B| = b10000

5
c = 2000 |C| = b10000

7
c = 1428 |D| = b10000

11
c =

909

|A ∩B| = b10000
15
c = 666 |A ∩ C| = b10000

21
c = 476 |A ∩D| = b10000

33
c = 303

|B ∩ C| = b10000
35
c = 285 |B ∩D| = b10000

55
c = 181 |C ∩D| = b10000

77
c = 129

|A ∩B ∩ C| = b10000
105
c = 95 |A ∩B ∩D| = b10000

165
c = 60

|A ∩ C ∩D| = b10000
231
c = 43 |B ∩ C ∩D| = b10000

385
c = 25

|A ∩B ∩ C ∩D| = b10000

1155
c = 8

.

(a.) This part asks us for |A ∪B ∪ C ∪D| we have

|A ∪B ∪C ∪D| = |A|+ |B|+ |C|+ |D| − |A ∩B| − |A ∩C| − |A ∩D| − |B ∩C| − |B ∩
D| − |C ∩D|+ |A ∩B ∩ C|+ |A ∩B ∩D|+ |A ∩ C ∩D|+ |B ∩ C ∩D| − |A ∩B ∩ C ∩D|

= 3333 + 2000 + 1428 + 909− 666− 476− 303− 285− 181− 129 + 95 + 60 + 43 + 25− 8

= 5845

(b.) This part asks for |(A ∩ B)\(C ∪ D)| = |A ∩ B| − |(A ∩ B) ∩ (C ∪ D)|. Now
(A ∩B) ∩ (C ∪D) = (A ∩B ∩ C) ∪ (A ∩B ∩D), so

|(A ∩B) ∩ (C ∪D)| = |A ∩B ∩ C|+ |(A ∩B ∩D)| − |(A ∩B ∩ C) ∩ (A ∩B ∩D)|

= |A ∩B ∩ C|+ |(A ∩B ∩D)| − |(A ∩B ∩ C ∩D)|

= 95 + 60− 8

= 147

The answer is 666− 147 = 519.
(c.) This question asks for the number of elements in



((A ∩B ∩ C)\D) ∪ ((A ∩B ∩D)\C) ∪ ((A ∩ C ∩D)\B) ∪ ((B ∩ C ∩D)\A).
Since these sets are pairwise disjoint, that is the intersection of two of the four is empty,

the number of elements in the union is the sum of the elements in each set. Since

|(A ∩B ∩ C)\D| = |A ∩B ∩ C| − |A ∩B ∩ C ∩D| = 95− 8 = 87

|(A ∩B ∩D)\C| = |A ∩B ∩ d| − |A ∩B ∩ C ∩D| = 60− 8 = 52

|(A ∩ C ∩D)\B| = |A ∩ C ∩D| − |A ∩B ∩ C ∩D| = 43− 8 = 35

|(B ∩ C ∩D)\A| = |B ∩ C ∩D| − |A ∩B ∩ C ∩D| = 25− 8 = 17

The answer is 87 + 52 + 35 + 17 = 191.

(d.) This part asks for the number of elements in (A ∩ B ∩ C ∩D)C , which is 10000 −
|A ∩B ∩ C ∩D| = 10000− 8 = 9992.

Problem 3: (Section 6.1 Exercise 19) Suppose A and B are finite sets with |A ∪ B| <
|A|+ |B|. Show that A and B have an element in common.

Solution:
Let A and B do not have an element in common. This would mean that the intersection

A∩B = ∅ (empty set). Thus |A∩B| = 0. But then |A∪B| = |A|+ |B|−|A∩B| = |A|+ |B|.
This contradicts with |A∪B| < |A|+ |B|. Thus our assumption about A and B not having
common element was wrong. So A and B do have a common element.

Problem 4: (Section 6.1 Exercise 20) Suppose A and B are finite sets. Prove that
|A×B| = |A| × |B|.

Solution:
By definition of Cartesian product

A×B = {(a, b)|a ∈ A, b ∈ B}

Let set A contain n elements, that is |A| = n. Let set B contain m elements, that
is |B| = m. Then, by Product Rule, set of pairs A × B contains nm elements. Thus
|A×B| = |A| × |B|.

Problem 5: (Section 6.2 Exercise 8) In how many ways can one draw from a standard
deck of 52 playing cards:

(a.) a heart or a spade?

(b.) an ace or a king?



(c.) a card numbered 2 through 10?

(d.) a card numbered 2 through 10 or a king?

Solution:
(a.) 26

(b.) 8

(c.) 36

(d.) 40

Problem 6: (section 6.2 Exercise 10) How many possible telephone numbers consist
of seven digits, the first two in the range of 2 − 9(inclusive), the third in the range of
1− 9(inclusive), and each of the last four in the range 0− 9(inclusive)?

Solution:

8× 8× 9× 10× 10× 10× 10 = 5, 760, 000

Problem 7: (Section 6.2 Exercise 17) Two dice are rolled: (a.) In how many ways
can a total of eight arise?

(b.) In how many ways can a total of seven arise?

(c.) In how many ways can a total of eight of seven arise?

(d.) In how many ways can one get ”doubles” (the dice land with the same side up)?

Solution:
(a.) Here are the possibilities. There are five ways to get a total of eight.

First Die 2 3 4 5 6
Second Die 6 5 4 3 2

(b.) Here are the possibilities. There are six ways to get a total of seven.

First Die 1 2 3 4 5 6
Second Die 6 5 4 3 2 1

(c.) There are 5 + 6 = 11 ways to get an eight or a seven.



(d.) Getting doubles means two 1′s, two 2′s, two 3′s, two 4′s, two 5′s or two 6′s. There
are six ways to get doubles.

Problem 8: (Section 6.2 Exercise 22) How many possible license plates can be manu-
factured if a license plate consists of three letters followed by three digits and

(a.) the digits must be distinct: the letters can be arbitrary?

(b.) the letters must be distinct; the digits can be arbitrary?

(c.) the digits and the letters must be distinct?

Solution:
(a.) 26× 26× 26× 10× 9× 8 = 12, 654, 720

(b.) 26× 25× 24× 10× 10× 10 = 15, 600, 000

(c.) 26× 25× 24× 10× 9× 8 = 11, 232, 000

Problem 9: (Section 6.3 Exercise 8) In a gathering of 30 people, there are 104 different
pairs of people who know each other.

(a.) Show that some person must have at least seven acquaintances.

(b.) Show that some person must have fewer than seven acquaintances.

Solution:
(a.) Make a box for each person and put into that box a checkmark for each acquaintance

with that person. There are 208 checkmarks to be entered into these boxes, so some must
contain at least d208

30
e = 7 checkmarks.

(b.) If this is wrong, then each person knows at least seven others. This would mean at
least 30(7) = 210 ordered pairs of people who know each other; that is, in the 210, Herb and
Edgar are counted twice, once because Herb knows Edgar and once because Edgar knows
Herd. So we get at least 1

2
(210) = 105 pairs of acquaintances, a contradiction.

Problem 10: (Section 6.3 Exercise 12) George has promised to increase his vocabulary
by learning the meanings of 90 new words during his summer holidays. Suppose he has 53
days in which to accomplish this task and will learn at least one new word a day. Show that
during some span of consecutive days, George will learn precisely 15 new words.

Solution:
Let bi be the number of words George learns on days 1 through i(inclusive) and consider

the 106 numbers
b1, b2, · · · , b53, b1 + 15, b2 + 15, · · · , b53 + 15.



The largest number here is b53 + 15 = 90 + 15 = 105. By the Pigeon Hole Principle, we
conclude that two numbers are the same. Since bi > bj if i > j, the only way for two to be
equal is for two to be equal is for bi = bj + 15 - that is, bi − bj = 15 - for some i and j. It
follows that George learns 15 new words on days j + 1 trough i.

Problem 11: (Section 6.3 Exercise 15) How many seats in a large auditorium have to
be occupied to be certain that at least three people seated have the same first and last initials?

Solution:
By the multiplication rule, there are 262 possible pairs of initials. If n seats are occupied,

the Pigeon Hole Principle (strong form) says that d n
262 e people seated will have the same

first and last initials. The smallest n such that d n
262 e = 3 is n = 2(262) + 1 = 1, 353.

Problem 12: (Section 6.3 Exercise 18) A cake is in the shape of a regular hexagon with
each of its sides exactly 30cm long. Seven flowers of icing adorn the top. Show that at least
two flowers are not more than 30cm apart.

Solution:
Subdivide the hexagon into six equilateral triangles. (1unit = 30cms) By the Pigeon

Hole Principle, at least two flowers must lie in, or on the boundary of , the same triangle.
Hence, these flowers are at most 30cms apart, the length of one side.


