
Assignment 5:
Problem 1: (Section 2.5 Exercise 1) Determine whether or not each of the following

relations is a partial order and state whether or not each partial order is a total order.

(d.)(N ×N,�), where (a, b) � (c, d) if and only if a ≤ c.

(e.) (N ×N,�), where (a, b) � (c, d) if and only if a ≤ c and b ≥ d.

Solution:
(d.) This is not a partial order because the relation is not antisymmetric; for example,

(1, 4) � (1, 8) because 1 ≤ 1 and similarly, (1, 8) � (1, 4), but (1, 4) 6= (1, 8).

(e.) This is a partial order.

Reflexive: For any (a, b) ∈ N ×N , (a, b) � (a, b) because a ≤ a and b ≥ b.

Antisymmetric: If (a, b), (c, d) ∈ N ×N , (a, b) � (c, d) and (c, d) � (a, b), then a ≤ c,
b ≥ d, c ≤ a and d ≥ b. So a = c, b = d and hence, (a, b) = (c, d).

Transitive: If (a, b), (c, d), (e, f) ∈ N ×N , (a, b) � (c, d) and (c, d) � (e, f), then a ≤ c,
b ≥ d, c ≤ e and d ≥ f . So a ≤ e (because a ≤ c ≤ e) and b ≥ f (because b ≥ d ≥ f) and,
therefore, (a, b) � (e, f).

This is not a total order; for example, (1, 4) and (2, 5) are incomparable.

Problem 2: (Section 2.5 Exercise 2) List the elements of the set

{11, 1010, 100, 1, 101, 111, 110, 1001, 10, 1000}

in lexicographic order, assuming 1 � 0.

Solution:

1, 11, 111, 110, 10, 101, 1010, 100, 1001, 1000

Problem 3: (Section 2.5 Exercise 5b) Draw the Hasse diagram for the following partial
order.

(b.) ({{a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, c}, {c, d}, }, ⊆).

Solution:
The sets {a, b, c, d}, {a, b, c}, {a, b}, {a} are all connected.

The sets {a, b, c, d} and {c, d} are connected.



The sets {a, b, c}, {a, c} are connected and {a}, {a, c} are connected.

Problem 4: (Section 2.5 Exercise 6) List all minimal, maximal, and maximum elements
for each of the partial orders in Exercise 5.

Solution:
{a} and {c, d} are minimal; there is no minimum.

The set {a, b, c, d} is maximal and maximum.

Problem 5: (Section 2.5 Exercise 12b) Prove that A ∨B = A ∪B.

Solution:
Assuming it exists, the least upper bound of A and B has two properties:

(1.)A ⊆ L,B ⊆ L;

(2.)ifA ⊆ C and B ⊆ C, then L ⊆ C.

We must prove that A ∪ B has these properties. Since A ⊆ A ∪ B and B ⊆ A ∪ B,
A ∪ B satisfies (1.) Also, if A ⊆ C and B ⊆ C, then A ∪ B ⊆ C, so A ∪ B satisfies (2) and
A ∪B = A ∨B.

Problem 6: (Section 2.5 Exercise 16b) Give an example of a totally ordered set which
has no maximum or minimum elements.

Solution:
(Z,≤) or (R,≤) are obvious examples.

Problem 7: (Section 3.1 Exercise 4) Give an example of a function N → N which is:

(b.) onto but not one-to-one;

(c.) neither one-to-one nor onto;

(d.) both one-to-one and onto.

Solution:
(b.) the function defined by f(1) = 1 and for n > 1, f(n) = n− 1, for example.

(c.) the constant function f(n) = 107 for all n, for example.



(d.) the identify function F (n) = n, for all n, for example.

Problem 8: (Section 3.1 Exercise 7) Let S = {1, 2, 3, 4} and define f : S → Z by

f(x) =

{
x2 + 1 if x is even
2x− 5 if x is odd

Express f as a subset of S × Z. Is f one-to-one?

Solution:
We have f(1) = 2(1) − 5 = −3, f(2) = 22 + 1 = 5, f(3) = 1, f(4) = 17, f(5) = 5, and

so, as a subset of S × Z, f = {(1,−3), (2, 5), (3, 1), (4, 17), (5, 5)}.

No, f is not one-to-one because f(2) = f(5) but 2 6= 5
( equivalently, (2, 5) and (5, 5) are both in f).

Problem 9: (Section 3.1 Exercise 13c) Define f : A → B by f(x) = x2 + 14x − 51.
Determine(with reasons) whether or not f is one-to-one and whether or not it is onto in each
of the following cases.

(c.) A = R, B = {b ∈ R|b ≥ −100}

Solution:
This function is not one-to-one; as in (b.), f(0) = f(−14). But it is onto since for any

y ≥ −100, x =
√

100 + y − 7 is a solution to y = f(x).

Problem 10: (Section 3.1 Exercise 18b) For each of the following, find the largest subset
A of R such that the given formula for f(x) defines a function f with domain A. Give the
range of f in each case.

(b.) f(x) = 1√
1−x

Solution:
We require 1− x > 0, so we take A = {x ∈ R|x < 1}.
Then the range is f = {y|y > 0} because for any y > 0, y = f(x) for x = 1− 1

y2 ∈ A.

Problem 11: (Section 3.1 Exercise 21) Let A be a set and let f : A→ A be a function.
For x, y ∈ A, define x ∼ y if f(x) = f(y).

(a.) Prove that ∼ is an equivalence relation on A.

(b.) For A = R and f(x) = bxc, find the equivalence classes of 0, 7
5
, and −3

4
.



(c.) Suppose A = {1, 2, 3, 4, 5, 6} and f = {(1, 2), (2, 1), (3, 1), (4, 5), (5, 6), (6, 1)}. Find
all equivalence classes.

Solution:
(a.) Reflexive: If a ∈ A, then a ∼ a because f(a) = f(a).

Symmetric: If a, b ∈ A and a ∼ b, then f(a) = f(b), so f(b) = f(a); hence, b ∼ a.

Transitive: If a, b, c ∈ A, a ∼ b and b ∼ c, then f(a) = f(b) and f(b) = f(c), so
f(a) = f(c), implying a ∼ c.

(b.) 0 = {x ∈ R|f(x) = f(0) = 0} = [0, 1); 7
5

= [1, 2) since b7
5
c = 1; −3

4
= [−1, 0) since

b−3
4
c = −1.

(c.) 1 = {1}; 2 = {2, 3, 6}; 4 = {4}; 5 = {5}.

Problem 12: (Section 3.2 Exercise 3) Show that each of the following functions f : A→
R is one-to-one. Find the range of each function and a suitable inverse.

(b.) A = {x ∈ R|x 6= −1}, f(x) = 5− 1
1+x

.

(d.) A = {x ∈ R|x 6= −3}, f(x) = x−3
x+3

.

Solution:
(b.) Suppose f(x1) = f(x2). Then

5− 1

1 + x1

= 5− 1

1 + x2

,

so
1

1 + x1

=
1

1 + x2

,

1 + x1 = 1 + x2

and
x1 = x2.

Thus f is one-to-one. Next we find inverse. Start with

y = 5− 1

1 + x

and solve for x
1

1 + x
= 5− y

1 + x =
1

5− y



x =
1

5− y
− 1.

Thus the inverse function is

f−1(y) =
1

5− y
− 1.

Its domain, which is the same as the range of f is y 6= 5.

(d.)Suppose f(x1) = f(x2). Then

x1 − 3

x1 + 3
=
x2 − 3

x2 + 3
,

so
x1x2 + 3x1 − 3x2 − 9 = x1x2 − 3x1 + 3x2 − 9

6x1 = 6x2 and x1 = x2. Thus f is one-to-one.
Next we find the inverse. Set

y =
x− 3

x+ 3

And solve for x to get after algebraic manipulations

x = f−1(y) =
3(1 + y)

1− y
.

Its domain, which is the same as the range of f is y 6= 1.

Problem 13: (Section 3.2 Exercise 5) Suppose A is the set of all married people,
mother:A→ A is the function which assigns to each married person his/her mother, and fa-
ther and spouse have similar meanings. Give sensible intrepretations of each of the following:

(e.) spouse ◦ mother

(f.) father ◦ spouse

(h.) (spouse ◦ father) ◦ mother

(i.) spouse ◦ (father ◦ mother)

Solution:
(e.) father

(f.) father-in-law

(h.) maternal grandmother



(i.) maternal grandmother

Problem 14: (Section 3.2 Exercise 15) Let S = {1, 2, 3, 4, 5} and let f , g, h : S → S be
the functions defined by

f = {(1, 2), (2, 1), (3, 4), (4, 5), (5, 3)}

g = {(1, 3), (2, 5), (3, 1), (4, 2), (5, 4)}

h = {(1, 2), (2, 2), (3, 4), (4, 3), (5, 1)}

(b.) Explain why f and g have inverses but h does not. Find f−1 and g−1.

(c.) Show that (f ◦ g)−1 = g−1 ◦ f−1 6= f−1 ◦ g−1.

Solution:
(b.) f−1 = {(1, 2), (2, 1), (3, 5), (4, 3), (5, 4)}; g−1 = {(1, 3), (2, 4), (3, 1), (4, 5), (5, 2)}

Functions f and g have inverses because they are one-to-one and onto while h does not
have an inverse because it is not one-to-one(equally because it is not onto).

(c.)
(f ◦ g)−1 = {(1, 4), (2, 3), (3, 2), (4, 1), (5, 5)}

g−1 ◦ f−1 = {(1, 4), (2, 3), (3, 2), (4, 1), (5, 5)} = (f ◦ g)−1

f−1 ◦ g−1 = {(1, 5), (2, 3), (3, 2), (4, 4), (5, 1)} 6= (f ◦ g)−1

Problem 15: (Section 3.2 Exercise 18) Suppose f : A→ B and g : B → C are functions.

(b.) If g ◦ f is onto and g is one-to-one, show that f is onto.

Solution:
Given b ∈ B, we must find a ∈ A such that f(a) = b. Consider g(b) ∈ C. Since

g ◦ f : A→ C is onto, there is some a ∈ A with g ◦ f(a) = g(b); that is, g(f(a)) = g(b). But



g one-to-one implies f(a) = b, so we have the desired element a.

Problem 16: (Section 3.3 Exercise 7) Suppose S is a set and for A, B ∈ P(S), we define
A � B to mean |A| ≤ |B|. Is this relation a partial order on P(S)? Explain.

Solution:
Case 1: S = ∅ and P(S) contains a single element, ∅. In this case � defines a partial

order.

Reflexive: Certainly A � A for all A ∈ P(S) since 0 = |∅| ≤ |∅|.

Antisymmetric: If A � B and B � A, then A = B since there is only one set in P(S).

Transitive: If A � B and B � C, then A � C since necessarily A = B = C and for the
single set A in P(S), A � A.

Case 2: S contains just one element, so P(S) = {∅,S} contains two elements. Again,
� defines a partial order.

Reflexive: A � A for each A ∈ P(S) because |A| ≤ |A|.

Antisymmetric: If A, B ∈ P(S), A � B and B � A, then we have |A| ≤ |B| and
|B| ≤ |A|, so |A| = |B|. Since P(S) does not contain different sets of the same cardinality,
it follows that A = B.

Transitive: Suppose A � B and B � C. If A = ∅, then |A| = 0 ≤ |C| no matter what
C is, so we’d have A � C. If A = S, then A � B means B = S and B � C means C = S,
so A = B = C = S and A � C.

Case 3: S has more than 1 element. In this case � is not a partial order because it is
not antisymmetric. For if a, b ∈ S and a 6= b, then {a} � {b} because |{a}| ≤ |{b}| and for
the same reason, {b} � {a}; however {a} 6= {b}.

Problem 17: (Section 3.3 Exercise 8) Show that for any sets A and B, |A×B| = |B×A|.

Solution:
f : A×B → B × A defined by f(a, b) = (b, a) is a one-to-one onto function.

Problem 18: (Section 3.3 Exercise 18) Determine, with justification, whether each of
the following sets is finite, countably infinite, or uncountable.

(c.) {m
n
|m,n ∈ N,m < 100, 5 < n < 105}

(d.) {m
n
|m,n ∈ Z,m < 100, 5 < n < 105}



Solution:
(c.) This set is finite. In fact, it contains at most 992 elements since there are 99 possible

numerators and, for each numerator, 99 possible denominators.

(d.) This set is countably infinite. List the elements as follows(deleting any repetitions
such as 5

100
= 1

20
):

99

6
,
99

7
, · · · , 99

104
,
98

6
,
98

7
, · · · , 98

104
, · · ·

Problem 19: (section 3.3 Exercise 23) Prove that the points of a plane and the points
of a sphere are stes of the same cardinality.

Solution:
We employ a concept known as stereographic projection. Imagine the sphere sitting

on the Cartesian plane with south pole at the origin. Any line from the north pole to the
plane punctures the sphere at a unique point and the collection of such lines establishes a one-
to-one correspondence between the points of the plane and the sphere except for the north
pole. A small modification of this correspondence finishes the job. Suppose p0, p1, p2, · · ·
are the points of the sphere which correspond to the points (0, 0), (1, 0), (2, 0), · · · in the
plane; thus, the line from the north pole to (n, 0) punctures the sphere at pn (in particular,
p0 = (0, 0)), the origin to (1, 0), p1 to (2, 0), and so forth and let all other points of the sphere
go to the same points as before.


