Assignment 5:

Problem 1: (Section 2.5 Exercise 1) Determine whether or not each of the following relations is a partial order and state whether or not each partial order is a total order.
(d.) $(N \times N, \preceq)$, where $(a, b) \preceq(c, d)$ if and only if $a \leq c$.
(e.) $(N \times N, \preceq)$, where $(a, b) \preceq(c, d)$ if and only if $a \leq c$ and $b \geq d$.

Solution:

(d.) This is not a partial order because the relation is not antisymmetric; for example, $(1,4) \preceq(1,8)$ because $1 \leq 1$ and similarly, $(1,8) \preceq(1,4)$, but $(1,4) \neq(1,8)$.
(e.) This is a partial order.

Reflexive: For any $(a, b) \in N \times N,(a, b) \preceq(a, b)$ because $a \leq a$ and $b \geq b$.
Antisymmetric: If $(a, b),(c, d) \in N \times N,(a, b) \preceq(c, d)$ and $(c, d) \preceq(a, b)$, then $a \leq c$, $b \geq d, c \leq a$ and $d \geq b$. So $a=c, b=d$ and hence, $(a, b)=(c, d)$.

Transitive: If $(a, b),(c, d),(e, f) \in N \times N,(a, b) \preceq(c, d)$ and $(c, d) \preceq(e, f)$, then $a \leq c$, $b \geq d, c \leq e$ and $d \geq f$. So $a \leq e$ (because $a \leq c \leq e$) and $b \geq f$ (because $b \geq d \geq f$) and, therefore, $(a, b) \preceq(e, f)$.

This is not a total order; for example, $(1,4)$ and $(2,5)$ are incomparable.
Problem 2: (Section 2.5 Exercise 2) List the elements of the set

$$
\{11,1010,100,1,101,111,110,1001,10,1000\}
$$

in lexicographic order, assuming $1 \preceq 0$.

Solution:

$$
1,11,111,110,10,101,1010,100,1001,1000
$$

Problem 3: (Section 2.5 Exercise 5b) Draw the Hasse diagram for the following partial order.
(b.) $(\{\{a\},\{a, b\},\{a, b, c\},\{a, b, c, d\},\{a, c\},\{c, d\}\},, \subseteq)$.

Solution:

The sets $\{a, b, c, d\},\{a, b, c\},\{a, b\},\{a\}$ are all connected.
The sets $\{a, b, c, d\}$ and $\{c, d\}$ are connected.

The sets $\{a, b, c\},\{a, c\}$ are connected and $\{a\},\{a, c\}$ are connected.

Problem 4: (Section 2.5 Exercise 6) List all minimal, maximal, and maximum elements for each of the partial orders in Exercise 5.

Solution:
$\{a\}$ and $\{c, d\}$ are minimal; there is no minimum.
The set $\{a, b, c, d\}$ is maximal and maximum.
Problem 5: (Section 2.5 Exercise 12b) Prove that $A \vee B=A \cup B$.

Solution:

Assuming it exists, the least upper bound of A and B has two properties:

$$
\text { (1.) } A \subseteq L, B \subseteq L \text {; }
$$

$$
\text { (2.) if } A \subseteq C \text { and } B \subseteq C, \text { then } L \subseteq C \text {. }
$$

We must prove that $A \cup B$ has these properties. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, $A \cup B$ satisfies (1.) Also, if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$, so $A \cup B$ satisfies (2) and $A \cup B=A \vee B$.

Problem 6: (Section 2.5 Exercise 16b) Give an example of a totally ordered set which has no maximum or minimum elements.

Solution:

(Z, \leq) or (R, \leq) are obvious examples.
Problem 7: (Section 3.1 Exercise 4) Give an example of a function $N \rightarrow N$ which is:
(b.) onto but not one-to-one;
(c.) neither one-to-one nor onto;
(d.) both one-to-one and onto.

Solution:

(b.) the function defined by $f(1)=1$ and for $n>1, f(n)=n-1$, for example.
(c.) the constant function $f(n)=107$ for all n, for example.
(d.) the identify function $F(n)=n$, for all n, for example.

Problem 8: (Section 3.1 Exercise 7) Let $S=\{1,2,3,4\}$ and define $f: S \rightarrow Z$ by

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x \text { is even } \\ 2 x-5 & \text { if } x \text { is odd }\end{cases}
$$

Express f as a subset of $S \times Z$. Is f one-to-one?

Solution:

We have $f(1)=2(1)-5=-3, f(2)=2^{2}+1=5, f(3)=1, f(4)=17, f(5)=5$, and so, as a subset of $S \times Z, f=\{(1,-3),(2,5),(3,1),(4,17),(5,5)\}$.

No, f is not one-to-one because $f(2)=f(5)$ but $2 \neq 5$
(equivalently, $(2,5)$ and $(5,5)$ are both in f).
Problem 9: (Section 3.1 Exercise 13c) Define $f: A \rightarrow B$ by $f(x)=x^{2}+14 x-51$. Determine(with reasons) whether or not f is one-to-one and whether or not it is onto in each of the following cases.
(c.) $A=R, B=\{b \in R \mid b \geq-100\}$

Solution:

This function is not one-to-one; as in (b.), $f(0)=f(-14)$. But it is onto since for any $y \geq-100, x=\sqrt{100+y}-7$ is a solution to $y=f(x)$.

Problem 10: (Section 3.1 Exercise 18b) For each of the following, find the largest subset A of R such that the given formula for $f(x)$ defines a function f with domain A. Give the range of f in each case.
(b.) $f(x)=\frac{1}{\sqrt{1-x}}$

Solution:

We require $1-x>0$, so we take $A=\{x \in R \mid x<1\}$.
Then the range is $f=\{y \mid y>0\}$ because for any $y>0, y=f(x)$ for $x=1-\frac{1}{y^{2}} \in A$.
Problem 11: (Section 3.1 Exercise 21) Let A be a set and let $f: A \rightarrow A$ be a function. For $x, y \in A$, define $x \sim y$ if $f(x)=f(y)$.
(a.) Prove that \sim is an equivalence relation on A.
(b.) For $A=R$ and $f(x)=\lfloor x\rfloor$, find the equivalence classes of $0, \frac{7}{5}$, and $\frac{-3}{4}$.
(c.) Suppose $A=\{1,2,3,4,5,6\}$ and $f=\{(1,2),(2,1),(3,1),(4,5),(5,6),(6,1)\}$. Find all equivalence classes.

Solution:

(a.) Reflexive: If $a \in A$, then $a \sim a$ because $f(a)=f(a)$.

Symmetric: If $a, b \in A$ and $a \sim b$, then $f(a)=f(b)$, so $f(b)=f(a)$; hence, $b \sim a$.
Transitive: If $a, b, c \in A, a \sim b$ and $b \sim c$, then $f(a)=f(b)$ and $f(b)=f(c)$, so $f(a)=f(c)$, implying $a \sim c$.
(b.) $\overline{0}=\{x \in R \mid f(x)=f(0)=0\}=[0,1) ; \overline{7}=[1,2)$ since $\left\lfloor\frac{7}{5}\right\rfloor=1 ; \overline{\frac{-3}{4}}=[-1,0)$ since $\left\lfloor\frac{-3}{4}\right\rfloor=-1$.
(c.) $\overline{1}=\{1\} ; \overline{2}=\{2,3,6\} ; \overline{4}=\{4\} ; \overline{5}=\{5\}$.

Problem 12: (Section 3.2 Exercise 3) Show that each of the following functions $f: A \rightarrow$ R is one-to-one. Find the range of each function and a suitable inverse.
(b.) $A=\{x \in R \mid x \neq-1\}, f(x)=5-\frac{1}{1+x}$.
(d.) $A=\{x \in R \mid x \neq-3\}, f(x)=\frac{x-3}{x+3}$.

Solution:

(b.) Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then

$$
5-\frac{1}{1+x_{1}}=5-\frac{1}{1+x_{2}}
$$

so

$$
\begin{aligned}
& \frac{1}{1+x_{1}}=\frac{1}{1+x_{2}} \\
& 1+x_{1}=1+x_{2}
\end{aligned}
$$

and

$$
x_{1}=x_{2} .
$$

Thus f is one-to-one. Next we find inverse. Start with

$$
y=5-\frac{1}{1+x}
$$

and solve for x

$$
\begin{aligned}
& \frac{1}{1+x}=5-y \\
& 1+x=\frac{1}{5-y}
\end{aligned}
$$

$$
x=\frac{1}{5-y}-1
$$

Thus the inverse function is

$$
f^{-1}(y)=\frac{1}{5-y}-1
$$

Its domain, which is the same as the range of f is $y \neq 5$.
(d.)Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then

$$
\frac{x_{1}-3}{x_{1}+3}=\frac{x_{2}-3}{x_{2}+3},
$$

so

$$
x_{1} x_{2}+3 x_{1}-3 x_{2}-9=x_{1} x_{2}-3 x_{1}+3 x_{2}-9
$$

$6 x_{1}=6 x_{2}$ and $x_{1}=x_{2}$. Thus f is one-to-one.
Next we find the inverse. Set

$$
y=\frac{x-3}{x+3}
$$

And solve for x to get after algebraic manipulations

$$
x=f^{-1}(y)=\frac{3(1+y)}{1-y} .
$$

Its domain, which is the same as the range of f is $y \neq 1$.
Problem 13: (Section 3.2 Exercise 5) Suppose A is the set of all married people, mother: $A \rightarrow A$ is the function which assigns to each married person his/her mother, and father and spouse have similar meanings. Give sensible intrepretations of each of the following:
(e.) spouse \circ mother
(f.) father \circ spouse
(h.) (spouse \circ father) \circ mother
(i.) spouse $\circ($ father \circ mother $)$

Solution:

(e.) father
(f.) father-in-law
(h.) maternal grandmother
(i.) maternal grandmother

Problem 14: (Section 3.2 Exercise 15) Let $S=\{1,2,3,4,5\}$ and let $f, g, h: S \rightarrow S$ be the functions defined by

$$
\begin{aligned}
& f=\{(1,2),(2,1),(3,4),(4,5),(5,3)\} \\
& g=\{(1,3),(2,5),(3,1),(4,2),(5,4)\} \\
& h=\{(1,2),(2,2),(3,4),(4,3),(5,1)\}
\end{aligned}
$$

(b.) Explain why f and g have inverses but h does not. Find f^{-1} and g^{-1}.
(c.) Show that $(f \circ g)^{-1}=g^{-1} \circ f^{-1} \neq f^{-1} \circ g^{-1}$.

Solution:

(b.) $f^{-1}=\{(1,2),(2,1),(3,5),(4,3),(5,4)\} ; g^{-1}=\{(1,3),(2,4),(3,1),(4,5),(5,2)\}$

Functions f and g have inverses because they are one-to-one and onto while h does not have an inverse because it is not one-to-one(equally because it is not onto).
(c.)
$(f \circ g)^{-1}=\{(1,4),(2,3),(3,2),(4,1),(5,5)\}$
$g^{-1} \circ f^{-1}=\{(1,4),(2,3),(3,2),(4,1),(5,5)\}=(f \circ g)^{-1}$
$f^{-1} \circ g^{-1}=\{(1,5),(2,3),(3,2),(4,4),(5,1)\} \neq(f \circ g)^{-1}$
Problem 15: (Section 3.2 Exercise 18) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
(b.) If $g \circ f$ is onto and g is one-to-one, show that f is onto.

Solution:

Given $b \in B$, we must find $a \in A$ such that $f(a)=b$. Consider $g(b) \in C$. Since $g \circ f: A \rightarrow C$ is onto, there is some $a \in A$ with $g \circ f(a)=g(b)$; that is, $g(f(a))=g(b)$. But
g one-to-one implies $f(a)=b$, so we have the desired element a.
Problem 16: (Section 3.3 Exercise 7) Suppose S is a set and for $A, B \in \mathcal{P}(\mathcal{S})$, we define $A \preceq B$ to mean $|A| \leq|B|$. Is this relation a partial order on $\mathcal{P}(\mathcal{S})$? Explain.

Solution:

Case 1: $S=\emptyset$ and $\mathcal{P}(\mathcal{S})$ contains a single element, \emptyset. In this case \preceq defines a partial order.

Reflexive: Certainly $A \preceq A$ for all $A \in \mathcal{P}(\mathcal{S})$ since $0=|\emptyset| \leq|\emptyset|$.
Antisymmetric: If $A \preceq B$ and $B \preceq A$, then $A=B$ since there is only one set in $\mathcal{P}(\mathcal{S})$.
Transitive: If $A \preceq B$ and $B \preceq C$, then $A \preceq C$ since necessarily $A=B=C$ and for the single set A in $\mathcal{P}(\mathcal{S}), A \preceq A$.

Case 2: S contains just one element, so $\mathcal{P}(\mathcal{S})=\{\emptyset, \mathcal{S}\}$ contains two elements. Again, \preceq defines a partial order.

Reflexive: $A \preceq A$ for each $A \in \mathcal{P}(\mathcal{S})$ because $|A| \leq|A|$.
Antisymmetric: If $A, B \in \mathcal{P}(\mathcal{S}), A \preceq B$ and $B \preceq A$, then we have $|A| \leq|B|$ and $|B| \leq|A|$, so $|A|=|B|$. Since $\mathcal{P}(\mathcal{S})$ does not contain different sets of the same cardinality, it follows that $A=B$.

Transitive: Suppose $A \preceq B$ and $B \preceq C$. If $A=\emptyset$, then $|A|=0 \leq|C|$ no matter what C is, so we'd have $A \preceq C$. If $A=S$, then $A \preceq B$ means $B=S$ and $B \preceq C$ means $C=S$, so $A=B=C=S$ and $A \preceq C$.

Case 3: S has more than 1 element. In this case \preceq is not a partial order because it is not antisymmetric. For if $a, b \in S$ and $a \neq b$, then $\{a\} \preceq\{b\}$ because $|\{a\}| \leq|\{b\}|$ and for the same reason, $\{b\} \preceq\{a\}$; however $\{a\} \neq\{b\}$.

Problem 17: (Section 3.3 Exercise 8) Show that for any sets A and $B,|A \times B|=|B \times A|$.

Solution:

$f: A \times B \rightarrow B \times A$ defined by $f(a, b)=(b, a)$ is a one-to-one onto function.
Problem 18: (Section 3.3 Exercise 18) Determine, with justification, whether each of the following sets is finite, countably infinite, or uncountable.
(c.) $\left\{\left.\frac{m}{n} \right\rvert\, m, n \in N, m<100,5<n<105\right\}$
(d.) $\left\{\left.\frac{m}{n} \right\rvert\, m, n \in Z, m<100,5<n<105\right\}$

Solution:

(c.) This set is finite. In fact, it contains at most 99^{2} elements since there are 99 possible numerators and, for each numerator, 99 possible denominators.
(d.) This set is countably infinite. List the elements as follows(deleting any repetitions such as $\frac{5}{100}=\frac{1}{20}$):

$$
\frac{99}{6}, \frac{99}{7}, \cdots, \frac{99}{104}, \frac{98}{6}, \frac{98}{7}, \cdots, \frac{98}{104}, \cdots
$$

Problem 19: (section 3.3 Exercise 23) Prove that the points of a plane and the points of a sphere are stes of the same cardinality.

Solution:

We employ a concept known as stereographic projection. Imagine the sphere sitting on the Cartesian plane with south pole at the origin. Any line from the north pole to the plane punctures the sphere at a unique point and the collection of such lines establishes a one-to-one correspondence between the points of the plane and the sphere except for the north pole. A small modification of this correspondence finishes the job. Suppose $p_{0}, p_{1}, p_{2}, \ldots$ are the points of the sphere which correspond to the points $(0,0),(1,0),(2,0), \cdots$ in the plane; thus, the line from the north pole to $(n, 0)$ punctures the sphere at p_{n} (in particular, $\left.p_{0}=(0,0)\right)$, the origin to $(1,0), p_{1}$ to $(2,0)$, and so forth and let all other points of the sphere go to the same points as before.

