Assignment 4 Solutions

Problem1: (Section 2.1 Exercise 9) (a.) List all the subsets of the set $\{a, b, c, d\}$ which contain:
(i.) four elements
(ii.) three elements
(iii.) two elements
(iv.) one element
(v.) no elements

Solution:

(i.) $\{a, b, c, d\}$
(ii.) $\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$
(iii.) $\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\}$
(iv.) $\{a\},\{b\},\{c\},\{d\}$
(v.) \emptyset
(b.) How many subsets of $\{a, b, c, d\}$ are there altogether?

Solution:

Altogether there are 16 subsets of $\{a, b, c, d\}$.

Problem 2: (Section 2.1 Exercise 10)
(a.) How many elements are in the power set of the power set of the empty set?

Solution:

If $A=\emptyset$, then $\mathcal{P}(A)=\{\emptyset\}$ is a set containing one element, so its power set contains two elements.
(b.) Suppose A is a set containing one element. How many elements are in $\mathcal{P}(\mathcal{P}(\mathcal{A}))$?

Solution:

$\mathcal{P}(A)$ contains two elements; $\mathcal{P}(\mathcal{P}(\mathcal{A}))$ has four elements.

Problem 3: (Section 2.2 Exercise 12) For $n \in Z$, let $A_{n}=\{a \in Z \mid a \leq n\}$. Find each of the following sets.
(b.) $A_{3} \cap A_{-3}$
(c.) $A_{3} \cap\left(A_{-3}\right)^{c}$
(d.) $\cap_{i=0}^{4} A_{i}$

Solution:

(b.) Since $A_{-3} \subseteq A_{3}, A_{3} \cap A_{-3}=A_{-3}$.
(c.) $A_{3} \cap\left(A_{-3}\right)^{c}=\{a \in Z \mid-3<a \leq 3\}=\{-2,-1,0,1,2,3\}$.
(d.) Since $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq A_{4}$, we have $\cap_{i=0}^{4} A_{i}=A_{0}$

Problem 4: (Section 2.2 Exercise 14)
(b.) Suppose A and B are sets such that $A \cup B=A$. What can you conclude? Why?

Answer: $A \subseteq B$.
Proof:
Assume that B is not a subset of A. That means B contains elements which are not in A.

Then the union $A \cup B$ will contain those elements as well, which would mean that $A \cup B \neq A$. Therefore B must be a subset of $A: B \subseteq A$.

Problem 5: (Section 2.2 Exercise 17a) Let A, B, and C be subsets of some universal set U.

Prove that $A \cap B \subseteq C$ and $A^{c} \cap B \subseteq C \rightarrow B \subseteq C$.

Solution:

Let $x \in B$. Certainly x is also in A or in A^{c}. This suggests cases.
Case 1: If $x \in A$, then $x \in A \cap B$, so $x \in C$.
Case 2: If x does not belong to A, then $x \in A^{c} \cap B$, so $x \in C$.
In either case, $x \in C$, so $B \subseteq C$.

Problem 6: (Section 2.2 Exercise 18a) Let A, B, and C be sets.
Find a counterexample to the statement $A \cup(B \cap C)=(A \cup B) \cap C$

Solution:

The Venn diagram shown in Fig 2.1 of the text suggests the following counterexample:
Let $A=\{1,2,3,4\}, B=\{3,4,5,6\}$ and $C=\{2,3,5,7\}$. Then $A \cup(B \cap C)=A \cup\{3,5\}=$ $\{1,2,3,4,5\}$ whereas $(A \cup B) \cap C=\{1,2,3,4,5,6,\} \cap C=\{2,3,5\}$

Problem 7: (Section 2.2 Exercise 19) Use the first law of De Morgan to prove the second:

$$
(A \cap B)^{c}=A^{c} \cup B^{c}
$$

Solution:

Way 1: We use the fact that $\left(X^{c}\right)^{c}=X$ for any set X.
Let $X=A^{c}$ and $Y=B^{c}$. Then $A=X^{c}$ and $B=Y^{c}$, so $(A \cap B)^{c}=\left[X^{c} \cap Y^{c}\right]^{c}=$ $\left[(X \cup Y)^{c}\right]^{c}$ (by the first law of De Morgan) $=X \cup Y=A^{c} \cup B^{c}$, as required.

Way 2: (this way we do not use the first law of De Morgan itself, but the proof is similar to the one of the first law of De Morgan)

$$
\begin{gathered}
(A \cap B)^{c}=\{x \in U \mid \neg(x \in A \wedge x \in B)\} \\
=\{x \in U \mid \neg(x \in A) \vee \neg(x \in B)\} \\
=A^{c} \cup B^{c}
\end{gathered}
$$

Problem 8: (Section 2.3 Exercise 4) With a table like that in Fig 2.2, illustrate a relation on the set $\{a, b, c, d\}$ which is
(b.) not symmetric and not anti antisymmetric
(d.) transitive

Solution:

(b.)

	a	b	c	d
a	X	X	X	
b		X		
c	X		X	
d				

(d.) | | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| a | X | X | X | X |
| b | | X | X | X |
| c | | | X | |
| d | | | X | X |

Problem 9: (Section 2.3 Exercise 9) Determine whether or not each of the binary re-
lations \mathcal{R} defined on the given sets A are reflexive, symmetric, antisymmetric, or transitive. If a relation has a certain property, prove this is so; otherwise, provide a counterexample to show that it does not.
(d.) $A=R ;(a, b) \in \mathcal{R}$ if and only if $a^{2}=b^{2}$.
(e.) $A=R ;(a, b) \in \mathcal{R}$ if and only if $a-b \leq 3$.
(h.) $A=Z ; \mathcal{R}=\{(x, y) \mid x+y=10\}$.
(j.) $A=N ;(a, b) \in \mathcal{R}$ if and only if $\frac{a}{b}$ is an integer.

Solution:

(d.) Reflexive: For any $a \in R, a^{2}=a^{2}$, so $(a, a) \in \mathcal{R}$.

Symmetric: If $(a, b) \in \mathcal{R}$ then $a^{2}=b^{2}$, so $b^{2}=a^{2}$ which says that $(b, a) \in \mathcal{R}$.
Not antisymmetric: $(1,-1) \in \mathcal{R}$ and $(-1,1) \in \mathcal{R}$ but $1 \neq-1$.
Transitive: If (a, b) and (b, c) are both in \mathcal{R}, then $a^{2}=b^{2}$ and $b^{2}=c^{2}$, so $a^{2}=c^{2}$ which says $(a, c) \in \mathcal{R}$.
(e.)Reflexive: For any $a \in R, a-a=0 \leq 3$ and so $(a, a) \in \mathcal{R}$.

Not Symmetric: For example, $(0,7) \in \mathcal{R}$ because $0-7=-7 \leq 3$, but $(7,0) \notin \mathcal{R}$ because $7-0=7 \neq 3$.

Not antisymmetric: $(2,1) \in \mathcal{R}$ because $2-1=1 \leq 3$ and $(1,2) \in \mathcal{R}$ because $1-2=-1 \leq 3$, but $1 \neq 2$.

Not Transitive: $(5,3) \in \mathcal{R}$ because $5-3=2 \leq 3$ and $(3,1) \in \mathcal{R}$ because $3-1=2 \leq 3$, but $(5,1) \notin \mathcal{R}$ because $5-1=4 \neq 3$.
(h.)Not Reflexive: $(2,2) \notin \mathcal{R}$ because $2+2 \neq 10$.

Symmetric: If $(x, y) \in \mathcal{R}$, then $x+y=10$, so $y+x=10$, and hence, $(y, x) \in \mathcal{R}$.
Not antisymmetric: $(6,4) \in \mathcal{R}$ because $6+4=10$ and similarly, $(4,6) \in \mathcal{R}$, but $6 \neq 4$.
Not Transitive: $(6,4) \in \mathcal{R}$ because $6+4=10$ and similarly, $(4,6) \in \mathcal{R}$, but $(6,6) \notin \mathcal{R}$ because $6+6 \neq 10$.
(j.)Reflexive: $\frac{a}{a}=1 \in N$ for any $a \in N$.

Not Symmetric: $(4,2) \in \mathcal{R}$ but $(2,4) \notin \mathcal{R}$.
Antisymmetric: If $\frac{a}{b}=n$ and $\frac{b}{a}=m$ are integers then $n m=1$ so $n, m \in\{ \pm\}$. Since a and b are positive, so are n and m. Therefore, $n=m=1$ and $a=b$.

Transitive: The argument given in Example 24 for Z works the same way for N.
Problem 10: (Section 2.4 Exercise 8) Define \sim on Z by $a \sim b$ if and only if $3 a+b$ is a multiple of 4 .
(a.) Prove that \sim defines an equivalence relation.
(b.) Find the equivalence class of 0 .
(c.) Find the equivalence class of 2 .
(d.) Make a guess about the quotient set.

Solution:

(a.) Reflexive: For any $a \in Z, 3 a+a=4 a$ is a multiple of 4 , so $a \sim a$.

Symmetric: If $a \sim b$, then $3 a+b=4 k$ for some integer k. Since $(3 a+b)+(3 b+a)=$ $4(a+b)$, we see that $3 b+a=4(a+b)-4 k$ is a multiple of 4 , so $b \sim a$.

Transitive: If $a \sim b$ and $b \sim c$, then $3 a+b=4 k$ for some integer k and $3 b+c=4 l$ for some integer l. Since $4(k+l)=(3 a+b)+(3 b+c)=(3 a+c)+4 b$, we see that $3 a+c=4(k+l)-4 b$ is a multiple of 4 and hence, that $a \sim c$.
(b.) $\overline{0}=\{x \in Z \mid x \sim 0\}=\{x \mid 3 x=4 k$, for some integer $k\}$. Now if $3 x=4 k, k$ must be a multiple of 3 . So $3 x=12 l$ for some integer $l \in Z$ and $x=4 l$.

Therefore, $\overline{0}=4 Z=\{0,4,8,12,16, \ldots\}$.
(c.) $\overline{2}=\{x \in Z \mid x \sim 2\}=\{x \mid 3 x+2=4 k$ for some integer $k\}=$ $\{x \mid 3 x=4 k-2$ for some integer $k\}$. Now if $3 x=4 k-2$, then $3 x=3 k+k-2$ and so $k-2$ is a multiple of 3 .

Therefore, $k=3 l+2$ for some integer $l, 3 x=4(3 l+2)-2=12 l+6$ and $x=4 l+2$.
So $\overline{2}=4 Z+2=\{2,6,10,14,18, \ldots\}$.

Problem 11: (Section 2.4 Exercise 12) Determine, with reasons, whether or not each of the following defines an equivalence relation on the set A.
(b.) A is the set of all circles in the plane; $a \sim b$ if and only if a and b have the same center.
(c.) A is the set of all straight lines in the plane; $a \sim b$ if and only if a is parallel to b.
(d.) A is the set of all lines in the plane; $a \sim b$ if and only if a is perpendicular to b.

Solution:

(b.) Yes, this is an Equivalence Relation.

Reflexive: If a is a circle, then $a \sim a$ because a has the same center as itself.
Symmetric: Assume $a \sim b$. Then a and b have the same center. Thus, b and a have the same center, so $b \sim a$.

Transitive: Assume $a \sim b$ and $b \sim c$. Then a and b have the same center and b and c have the same center, so a and c have the same center. Thus $a \sim c$.
(c.) Yes, this is an Equivalence Relation.

Reflexive: If a is a line, then a is parallel to itself, so $a \sim a$.
Symmetric: If $a \sim b$, then a is parallel to b. Thus, b is parallel to a. Hence, $b \sim a$.
Transitive: If $a \sim b$ and $b \sim c$, then a is parallel to b and b is parallel to c, so a is parallel to c. Thus $a \sim c$.
(d.) No, this is Not an equivalence relation. The reflexive property does not hold because no line is perpendicular to itself. Neither is this relation transitive; if l_{1} is perpendicular to l_{2} and l_{2} is perpendicular to l_{3}, then l_{1} and l_{3} are parallel, not perpendicular to one another.

