Assignment 4 Solutions

Problem1: (Section 2.1 Exercise 9) (a.) List all the subsets of the set {a, b, ¢, d} which
contain:

(i.) four elements
ii.) three elements

iii.) two elements
iv.) one element

v.) no elements
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Solution:

(i.) {a,b,c,d}

(ii.) {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}

(iii.) {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}

(iv.) {a}, {b}, {c}, {d}

(v.) 0

(b.) How many subsets of {a, b, c,d} are there altogether?

Solution:

Altogether there are 16 subsets of {a,b, ¢, d}.

Problem 2: (Section 2.1 Exercise 10)

(a.) How many elements are in the power set of the power set of the empty set?

Solution:

If A=0, then P(A) = {0} is a set containing one element, so its power set contains two
elements.

(b.) Suppose A is a set containing one element. How many elements are in P(P(A))?
Solution:
P(A) contains two elements; P(P(A)) has four elements.

Problem 3: (Section 2.2 Exercise 12) For n € Z, let A,, = {a € Z]a < n}. Find each of
the following sets.

(b.) AsN A_3



(c.) A3 N (As)°

(d.) Nisods

Solution:

(b.) Since A_3 C A3, AsNA_3=A_3.

(c) AsN(A3)={a€eZ|-3<a<3}={-2,-1,0,1,2,3}.

(d.) Since Ay C A; C Ay C A3 C Ay, we have Ny A; = Ag

Problem 4: (Section 2.2 Exercise 14)
(b.) Suppose A and B are sets such that AU B = A. What can you conclude? Why?

Answer: A C B.
Proof:

Assume that B is not a subset of A. That means B contains elements which are not in
A

Then the union AU B will contain those elements as well, which would mean that AUB # A.
Therefore B must be a subset of A: B C A.

Problem 5: ( Section 2.2 Exercise 17a) Let A, B, and C be subsets of some universal
set U.

Prove that ANBC C and ANBCC — B CC(.
Solution:

Let x € B. Certainly z is also in A or in A°. This suggests cases.
Case 1: If r € A, thenx € ANB,sox e C.

Case 2: If x does not belong to A, then x € A°N B, sox € C.

In either case, x € C, so B C C.

Problem 6: (Section 2.2 Exercise 18a) Let A, B, and C' be sets.

Find a counterexample to the statement AU (BNC)=(AUuB)NC



Solution:
The Venn diagram shown in Fig 2.1 of the text suggests the following counterexample:

Let A= {1,2,3,4}, B ={3.4,5,6} and C = {2,3,5,7}. Then AU(BNC) = AU{3,5} =
{1,2,3,4,5} whereas (AUB)NC =1{1,2,3,4,5,6,} NC ={2,3,5}

Problem 7: (Section 2.2 Exercise 19) Use the first law of De Morgan to prove the second:

(AN B)® = A°U B

Solution:
Way 1: We use the fact that (X¢)¢ = X for any set X.

Let X = Aand Y = B°. Then A = X¢and B =Y¢ so (ANB)* = [X°NY° =
(X UY)]¢ (by the first law of De Morgan)= X UY = A°U B¢, as required.

Way 2: (this way we do not use the first law of De Morgan itself, but the proof is similar
to the one of the first law of De Morgan)

(ANB)={zeU|-(re€ ANz € B)}
={reU|-(reA)V-(reB)}
= A°U B°
Problem 8: (Section 2.3 Exercise 4) With a table like that in Fig 2.2, illustrate a relation
on the set {a, b, ¢, d} which is
(b.) not symmetric and not anti antisymmetric

(d.) transitive

Solution:
al|lb|c|d
al|l X | X
(b.) b X
c| X
d
al|b|c|d
al X | X | X | X
(d.) b XX | X
c X
d X | X

Problem 9: ( Section 2.3 Exercise 9) Determine whether or not each of the binary re-



lations R defined on the given sets A are reflexive, symmetric, antisymmetric, or transitive.
If a relation has a certain property, prove this is so; otherwise, provide a counterexample to
show that it does not.

(d.) A= R; (a,b) € R if and only if a® = b%.

(e.) A=R; (a,b) € R if and only if a — b < 3.

(h.) A=Z; R ={(z,y)|r+y = 10}.

(j.) A= N; (a,b) € R if and only if  is an integer.

Solution:

(d.) Reflexive: For any a € R, a* = a?, so (a,a) € R.

Symmetric: If (a,b) € R then a? = b?, so b* = a* which says that (b,a) € R.

Not antisymmetric: (1,—1) € R and (—1,1) € R but 1 # —1.

Transitive: If (a,b) and (b, c) are both in R, then a* = b? and b? = 2, so a* = ¢? which
says (a,c) € R.

(e.)Reflexive: For any a € R, a —a =0 < 3 and so (a,a) € R.

Not Symmetric: For example, (0,7) € R because 0 — 7 = —7 < 3, but (7,0) ¢ R
because 7—0 =7 # 3.

Not antisymmetric: (2,1) € R because 2 —1 = 1 < 3 and (1,2) € R because
1-2=—-1<3,but 12

Not Transitive: (5,3) € R because 5—3 =2 <3 and (3,1) € R because 3—1 =2 < 3,
but (5,1) ¢ R because 5 — 1 =4 # 3.

(h.)Not Reflexive: (2,2) ¢ R because 2 + 2 # 10.
Symmetric: If (z,y) € R, then x 4+ y = 10, so y + = = 10, and hence, (y,z) € R.

Not antisymmetric: (6,4) € R because 6+4 = 10 and similarly, (4,6) € R, but 6 # 4.

Not Transitive: (6,4) € R because 6 +4 = 10 and similarly, (4,6) € R, but (6,6) ¢ R
because 6 + 6 # 10.

(j.)Reflexive: 2 =1 ¢€ N for any a € N.



Not Symmetric: (4,2) € R but (2,4) ¢ R.

Antisymmetric: If § = n and g = m are integers then nm = 1 so n, m € {£}. Since
a and b are positive, so are n and m. Therefore, n =m =1 and a = b.

Transitive: The argument given in Example 24 for Z works the same way for V.

Problem 10: (Section 2.4 Exercise 8) Define ~ on Z by a ~ b if and only if 3a + b is a
multiple of 4.

(a.) Prove that ~ defines an equivalence relation.

(b.) Find the equivalence class of 0.

(c.) Find the equivalence class of 2.

(d.) Make a guess about the quotient set.

Solution:

(a.) Reflexive: For any a € Z, 3a + a = 4a is a multiple of 4, so a ~ a.

Symmetric: If a ~ b, then 3a + b = 4k for some integer k. Since (3a +b) + (3b+a) =
4(a+b), we see that 30 +a = 4(a + b) — 4k is a multiple of 4, so b ~ a.

Transitive: If a ~ b and b ~ ¢, then 3a 4+ b = 4k for some integer k£ and 3b+ ¢ = 4l
for some integer . Since 4(k +1) = (3a +b) + (3b + ¢) = (3a + ¢) + 4b, we see that
3a + ¢ =4(k + 1) — 4b is a multiple of 4 and hence, that a ~ c.

(b.)0 = {z € Z|z ~ 0} = {z|3x = 4k, for some integer k}. Now if 3z = 4k, k must be a
multiple of 3. So 3z = 12[ for some integer [ € Z and x = 4l.

Therefore, 0 = 47 = {0,4,8,12,16, ...}.
(c)2={x € Z|x ~ 2} = {z|3x + 2 = 4k for some integer k} =
{z|3z = 4k — 2 for some integer k}. Now if 3z = 4k — 2, then 3z =3k + k —2 and so k — 2
is a multiple of 3.
Therefore, k = 31 + 2 for some integer [, 3x = 4(3l +2) —2 =12l + 6 and x = 4] + 2.
So2 =47 +2={2,6,10,14,18,...}.

Problem 11: (Section 2.4 Exercise 12) Determine, with reasons, whether or not each of
the following defines an equivalence relation on the set A.



(b.) Ais the set of all circles in the plane; a ~ b if and only if @ and b have the same center.
(c.) A is the set of all straight lines in the plane; a ~ b if and only if a is parallel to b.
(d.) A is the set of all lines in the plane; a ~ b if and only if a is perpendicular to b.
Solution:

(b.) Yes, this is an Equivalence Relation.

Reflexive: If a is a circle, then a ~ a because a has the same center as itself.

Symmetric: Assume a ~ b. Then a and b have the same center. Thus, b and a have
the same center, so b ~ a.

Transitive: Assume a ~ b and b ~ ¢. Then a and b have the same center and b and ¢
have the same center, so a and ¢ have the same center. Thus a ~ c.

(c.) Yes, this is an Equivalence Relation.
Reflexive: If a is a line, then a is parallel to itself, so a ~ a.
Symmetric: If a ~ b, then a is parallel to b. Thus, b is parallel to a. Hence, b ~ a.

Transitive: If a ~ b and b ~ ¢, then a is parallel to b and b is parallel to ¢, so a is
parallel to ¢. Thus a ~ c.

(d.) No, this is Not an equivalence relation. The reflexive property does not hold because
no line is perpendicular to itself. Neither is this relation transitive; if [; is perpendicular to
l> and [, is perpendicular to l3, then [; and [3 are parallel, not perpendicular to one another.



