
Assignment 3 Solutions
Problem1: (Section 1.2 Exercise 8) Consider the following assertions.

A:”There exists a real number y such that y > x for every real number x”

B:”For every real number x, there exists a real number y such that y > x”

Solution:

A: False. Since there is no such a number y which is larger than all of real numbers.

B: True. Since for each individual number x we can always find y > x.

Problem 2: (Section 1.2 Exercise 10) Answer true or false and supply a direct proof or
a counterexample to each of the following assertions.

(a.)There exists a positive integer n such that nq is an integer for every rational number q.

(b.) For every rational number q, there exists an integer n such that nq is an integer.

Solution:

(a.) False. The original statement P : ∃n, ∀q nq is an integer. Then its negation is:
¬P : ∀n ∃q such that nq is not an integer.

The negation ¬P is true. Indeed, for any integer n take q = a
b

such that n is not an
integer multiple of b. For example, take q = 1

n+1
. Then nq in not an integer.

Since ¬P can be proved to be True, that means P is False.

(b.) True. q is a rational number. Let q = a
b
, where a, b are integers and b 6= 0. So

nq = na
b

Choose n = bk where k is some integer, so n is an intger. Then nq = na
b

= bk a
b

= (ba
b
)k = ak.

The product of two integers a, k is also an integer.

Therefore, for every rational number q, there exists an integer n such that nq is an integer.

Problem 3: (Section 1.2 Exercise 12) Provide a direct proof that n2 − n+ 5 is odd, for
all integers n.

Solution:
Proof: n2−n+ 5 = n(n−1) + 5 Since (n−1) and n are two consecutive integers, therefore,
one of them must be even, and the other must be odd. So the product n(n−1) must contain
a factor 2.



Let n(n− 1) = 2k, where k is an integer. Then

n2 − n+ 5 = n(n− 1) + 5 = 2k + 5 = 2k + 4 + 1 = 2(k + 2) + 1 = 2m+ 1,

where m = k + 2. m is an integer. Therefore, n2 − n+ 5 = 2m+ 1 is odd.

Problem 4: (Section 1.2 Exercise 14) Let a and b be integers. By examining the four
cases:

(i.) a, b both even
(ii.) a, b both odd
(iii.) a even, b odd
(iv.) a odd, b even

Find a necessary and sufficient condition for a2 − b2 to be odd.

Solution:
The necessary and sufficient condition for a2 − b2 to be odd is: one of a or b is odd and
another is even. This conclution follows from consideration of cases:

(i.) Let a = 2k, b = 2m, where k and m are integers.

a2 − b2 = (2k)2 − (2m)2 = 4k2 − 4m2 = 4(k2 −m2).

Let k2 −m2 = n, so n is an integer. Then

a2 − b2 = 4n = 2(2n)

So a2 − b2 is even. Therefore, case(i.) is not what we need.

(ii.)Let a = 2k + 1, b = 2m+ 1, where k and m are integers.

a2−b2 = (2k+1)2−(2m+1)2 = 4k2+4k+1−(4m2+4m+1) = 4k2+4k−4m2−4m = 2(2k2+2k−2m2−2m)

Since k and m are integers, k2, m2 are also integers. Let 2k2 + 2k − 2m2 − 2m = P , then P
is an integer and a2 − b2 = 2P is even. Therefore, case(ii.) is not what we need, either.

(iii.)Let a = 2k, b = 2m+ 1, where k and m are integers.

a2−b2 = (2k)2−(2m+1)2 = 4k2−4m2−4m−1 = 4k2−4m2−4m−2+1 = 2(2k2−2m2−2m−1)+1.

Let P = 2k2 − 2m2 − 2m − 1, so P is an integer, then a2 − b2 = 2P + 1 is odd. Therefore,
in case(iii.) a2 − b2 is odd.

(iv.) Let a = 2k + 1, b = 2m, where k, m are integers.

a2−b2 = (2k+1)2−(2m)2 = 4k2 +4k+1−4m2 = 4k2 +4k−4m2 +1 = 2(2k2 +2k−2m2)+1.

Let 2k2 + 2k−2m2 = P , then a2− b2 = 2P + 1, which is odd. Therefore, in case (iv.) a2− b2



is odd.

Problem 5: (Section 1.2 Exercise 16) Let x be a real number. Find a necessary and
sufficient condition for x+ 1

x
≥ 2. Prove your answer.

Solution:
First, we notice that x 6= 0 otherwise the function 1

x
is undefined. Trying several values of

x we can make a conjecture that the condition is x > 0. To prove the statement : x > 0 is
necesary and sufficient condition for x+ 1

x
≥ 2 we need two parts.

Part i: (x > 0 is sufficient.)
Assume that x > 0 and show that then x+ 1

x
≥ 2.

proof: since x > 0, multiply both sides of the inequality we wish to prove by x and
simplify. We get

x+
1

x
≥ 2

x(x+
1

x
) ≥ 2x

x2 + 1 ≥ 2x

x2 − 2x+ 1 ≥ 0

(x− 1)2 ≥ 0

The last inequality is true for any x, and since for x > 0 the last one is equivalent to the
first one x+ 1

x
≥ 2 then the first one is also true for x > 0.

Part ii. (x > 0 is necessary.)
Assuume that x+ 1

x
≥ 2 and show that x > 0. We would rather proof the contrapositive:

x < 0 implies x+ 1
x
< 2. But this one it true because for x < 0 x+ 1

x
< 0 and 0 < 2.

Problem 6: (Section 1.2 Exercise 21) Let n = ab be the product of positive integers a
and b. Prove that either a ≤

√
n or b ≤

√
n.

Solution:

Proof: Suppose a ≤ b, a and b are positive integers. Then

aa ≤ ab = n

a2 ≤ n

a ≤
√
n

Note that since a > 0 then n > 0. Since we arbitrarily assigned a ≤ b, b ≤ a is also
possible. If b ≤ a, the proof is exactly that same as the aboveexcept that we need to switch



the notation a and b. The conclusion will become b ≤
√
n. Therefore, either a ≤

√
n or

b ≤
√
n.

Problem 7: (Section 1.2 Exercise 25) Find a proof or exhibit a counterexample to each
of the following statements.

(b.) a an even integer → 1
2
a an even integer.

(d.) If a and b are real numbers with a+ b rational, then a and b are rational.

Solution:

(b.) Counterexample: Let a = 6, then 1
2
(a) = 1

2
(6) = 3, which is an integer but it is

odd.

(d.) Counterexample: Let a =
√

2+1, b = −
√

2+1, then a+b = (
√

2+1)+(−
√

2+1) =
2, which is rational. But obviously neither a nor b is rational.

Problem 8: (Section 1.2 Exercise 26) Suppose ABC and A′B′C ′ are triangles with pair-
wise equal angles; that is 6 A = 6 A′, 6 B = 6 B′, and 6 C = 6 C ′. Then it is a well-known
result in Euclidean geometry that the triangles have pairwise proportional sides (the trian-
gles are similar). Does the same property hold for polygons with more than three sides?
Give a proof or provide a counterexample.

Solution:

Counterexample: Square and rectangle have same angles all equal to π/2 but sides are
not proportional.

Problem 9: (Section 5.1 Exercise 3) Prove that it is possible to fill an order for n ≥ 32
pounds of fish given bottomless wheelbarrows full of 5-pound and 9-pound fish.

Solution:

Proof: P(n):”n = 5m+ 9l, m and l are some non-negative integers, ∀n ≥ 32”

P (32) : 32 = 5(1) + 9(3) m = 1, l = 3

P (33) : 33 = 5(3) + 9(2) m = 3, l = 2

P (34) : 34 = 5(5) + 9(1) m = 5, l = 1

P (35) : 35 = 5(7) + 9(0) m = 7, l = 0

P (36) : 36 = 5(0) + 9(4) m = 0, l = 4



We’ve shown that P (32) ∧ P (33) ∧ P (34) ∧ P (35) ∧ P (36) is True.

We assume that P (k)∧P (k+ 1)∧P (k+ 2)∧P (k+ 3)∧P (k+ 4) is True, which means:

P (k) : k = 5m+ 9l,

P (k + 1) : k + 1 = 5m+ 9l,

P (k + 2) : k + 2 = 5m+ 9l,

P (k + 3) : k + 3 = 5m+ 9l,

P (k + 4) : k + 4 = 5m+ 9l,

where m and l are some non-negative integers. Then

P (k + 5) : k + 5 = 5m+ 9l + 5 = 5(m+ 1) + 9l = 5m′ + 9l′,

where m′ = m+ 1, l′ = l

P (k + 6) : k + 6 = (k + 1) + 5 = 5m+ 9l + 5 = 5m′ + 9l′

where m′ = m+ 1, l′ = l

P (k + 7) : k + 7 = (k + 2) + 5 = 5m+ 9l + 5 = 5m′ + 9l′

where m′ = m+ 1, l′ = l

P (k + 8) : k + 8 = (k + 3) + 5 = 5m+ 9l + 5 = 5m′ + 9l′

where m′ = m+ 1, l′ = l

P (k + 9) : k + 9 = (k + 4) + 5 = 5m+ 9l + 5 = 5m′ + 9l′

where m′ = m+ 1, l′ = l
That is, P (k + 5) ∧ P (k + 6) ∧ P (k + 7) ∧ P (k + 8) ∧ P (k + 9) is also True. Therefore,

P (n) is True for ∀n ≥ 32

Problem 10: (Section 5.1 Exercise 4) Use mathematical induction to prove the truth of
each of the following assertions for all n ≥ 1.

(b.) n3 + 2n is divisible by 3.
(d.) 5n − 1 is divisible by 4.
(e.) 8n − 3n is divisible by 5.

Solution:



(b.)
Proof:

Step 1:
P (n) : n3 + 2n is divisible by 3.

13 + 2(1) = 3

3

3
= 1

So P (1) is True
Step 2:

Assume P (k) is True. That is k3 + 2k = 3q, q is an integer. Then

(k + 1)3 + 2(k + 1)

= k3 + 3k2 + 3k + 1 + 2k + 2

= (k3 + 2k) + (3k2 + 3k + 3)

= 3q + 3(k2 + k + 1)

= 3(q + k2 + k + 1)

q + k2 + k + 1 is also an integer, which shows that (k + 1)3 + 2(k + 1) is also divisible by
3.

Step3:

Since P (1) is True and all implications P (k)→ P (k+ 1) are True, then P (n) is True for
all n ≥ 1.

(d.)

Proof:

Step 1:
P (n) : 5n − 1 is divisible by 4.

51 − 1 = 4

4

4
= 1

So P (1) is True
Step 2:

Assume P (k) is True. That is 5k − 1 = 4P , P is an integer. Then

5k+1 − 1 = (5)5k − 1

= 5(4P + 1)− 1



= 20P + 4

= 4(5P + 1)

Obviously, 5P + 1 is an integer. Therefore, 5k+1 − 1 is also divisible by 4.
Step 3:

Since P (1) is True, and all implications P (k)→ P (k+1) are True, then P (n) is generally
True for all n ≥ 1.

(e.)

Proof:

Step 1:
P (n) : 8n − 3n is divisible by 5.

81 − 31 = 8− 3

= 5
5

5
= 1

So P (1) is True.
Step 2:

Assume P (k) is true. Therefore, 8k − 3k = 5m, m is an integer. Then

8k+1 − 3k+1 = (8)8k − (3)3k

= (3 + 5)8k − (3)3k

= (3)8k − (3)3k + (5)8k

= 3(8k − 3k) + (5)8k

= 3(5m) + (5)8k

= 5(3m+ 8k)

3m+ 8k is an integer, provided that m and k are integers. Thus, 8k+1 − 3k+1 is divisible
by 5.

Step 3:
Since P (1) is true and all of the implications P (k) → P (k + 1) are true, thus P (n) is True
for all n ≥ 1.

Problem 11: (Section 5.1 Exercise 5)

(b.) Prove by mathematical induction that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4



for any natural number n.
(c.) Use the results of (a.) and (b.) to establish that

(1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + · · ·+ n3

for all n ≥ 1.

Solution:

(b.)

Proof:

Step 1:

P (n) : 13 + 23 + · · ·+ n3 = n2(n+1)2

4

12(1 + 1)2

4
=

1222

4

= 1

= 13

So P (1) is True.
Step 2:

Assume that P (k) is True, that is

13 + 23 + · · ·+ k3 =
k2(k + 1)2

4
.

Then

13 + 23 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3

= (k + 1)2(
k2

4
+ k + 1)

(k + 1)2(
1

4
(k2 + 4k + 4)

(k + 1)2(k + 2)2

4

(k + 1)2[(k + 1) + 1]2

4

We’ve shown if P (k) holds then P (k + 1) holds.
Step 3:

Because P (1) is True and all the implications P (k) → P (k + 1) are True. P (n) is True for
all natural number n.



(c.)

From (a.) we know that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

Therefore,

(1 + 2 + 3 + · · ·+ n)2 =

[
n(n+ 1)

2

]2

=
n2(n+ 1)2

4

for n ≥ 1
From (b.), we know that

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4

for n ≥ 1
Thus,

(1 + 2 + 3 + · · ·+ n)2 = 13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4

for n ≥ 1.


