Assignment 3 Solutions

Problem1: (Section 1.2 Exercise 8) Consider the following assertions.
A:"There exists a real number y such that $y>x$ for every real number $x "$
B:"For every real number x, there exists a real number y such that $y>x "$

Solution:

A: False. Since there is no such a number y which is larger than all of real numbers.
B: True. Since for each individual number x we can always find $y>x$.
Problem 2: (Section 1.2 Exercise 10) Answer true or false and supply a direct proof or a counterexample to each of the following assertions.
(a.)There exists a positive integer n such that $n q$ is an integer for every rational number q.
(b.) For every rational number q, there exists an integer n such that $n q$ is an integer.

Solution:

(a.) False. The original statement $P: \exists n, \forall q n q$ is an integer. Then its negation is: $\neg P: \forall n \exists q$ such that $n q$ is not an integer.

The negation $\neg P$ is true. Indeed, for any integer n take $q=\frac{a}{b}$ such that n is not an integer multiple of b. For example, take $q=\frac{1}{n+1}$. Then $n q$ in not an integer.

Since $\neg P$ can be proved to be True, that means P is False.
(b.) True. q is a rational number. Let $q=\frac{a}{b}$, where a, b are integers and $b \neq 0$. So $n q=n \frac{a}{b}$
Choose $n=b k$ where k is some integer, so n is an intger. Then $n q=n \frac{a}{b}=b k \frac{a}{b}=\left(b \frac{a}{b}\right) k=a k$. The product of two integers a, k is also an integer.

Therefore, for every rational number q, there exists an integer n such that $n q$ is an integer.

Problem 3: (Section 1.2 Exercise 12) Provide a direct proof that $n^{2}-n+5$ is odd, for all integers n.

Solution:

Proof: $n^{2}-n+5=n(n-1)+5$ Since $(n-1)$ and n are two consecutive integers, therefore, one of them must be even, and the other must be odd. So the product $n(n-1)$ must contain a factor 2 .

Let $n(n-1)=2 k$, where k is an integer. Then

$$
n^{2}-n+5=n(n-1)+5=2 k+5=2 k+4+1=2(k+2)+1=2 m+1,
$$

where $m=k+2 . m$ is an integer. Therefore, $n^{2}-n+5=2 m+1$ is odd.
Problem 4: (Section 1.2 Exercise 14) Let a and b be integers. By examining the four cases:
(i.) a, b both even
(ii.) a, b both odd
(iii.) a even, b odd
(iv.) a odd, b even

Find a necessary and sufficient condition for $a^{2}-b^{2}$ to be odd.

Solution:

The necessary and sufficient condition for $a^{2}-b^{2}$ to be odd is: one of a or b is odd and another is even. This conclution follows from consideration of cases:
(i.) Let $a=2 k, b=2 m$, where k and m are integers.

$$
a^{2}-b^{2}=(2 k)^{2}-(2 m)^{2}=4 k^{2}-4 m^{2}=4\left(k^{2}-m^{2}\right) .
$$

Let $k^{2}-m^{2}=n$, so n is an integer. Then

$$
a^{2}-b^{2}=4 n=2(2 n)
$$

So $a^{2}-b^{2}$ is even. Therefore, case(i.) is not what we need.
(ii.) Let $a=2 k+1, b=2 m+1$, where k and m are integers.
$a^{2}-b^{2}=(2 k+1)^{2}-(2 m+1)^{2}=4 k^{2}+4 k+1-\left(4 m^{2}+4 m+1\right)=4 k^{2}+4 k-4 m^{2}-4 m=2\left(2 k^{2}+2 k-2 m^{2}-2 m\right)$
Since k and m are integers, k^{2}, m^{2} are also integers. Let $2 k^{2}+2 k-2 m^{2}-2 m=P$, then P is an integer and $a^{2}-b^{2}=2 P$ is even. Therefore, case(ii.) is not what we need, either.
(iii.) Let $a=2 k, b=2 m+1$, where k and m are integers.
$a^{2}-b^{2}=(2 k)^{2}-(2 m+1)^{2}=4 k^{2}-4 m^{2}-4 m-1=4 k^{2}-4 m^{2}-4 m-2+1=2\left(2 k^{2}-2 m^{2}-2 m-1\right)+1$.
Let $P=2 k^{2}-2 m^{2}-2 m-1$, so P is an integer, then $a^{2}-b^{2}=2 P+1$ is odd. Therefore, in case(iii.) $a^{2}-b^{2}$ is odd.
(iv.) Let $a=2 k+1, b=2 m$, where k, m are integers.
$a^{2}-b^{2}=(2 k+1)^{2}-(2 m)^{2}=4 k^{2}+4 k+1-4 m^{2}=4 k^{2}+4 k-4 m^{2}+1=2\left(2 k^{2}+2 k-2 m^{2}\right)+1$.

Let $2 k^{2}+2 k-2 m^{2}=P$, then $a^{2}-b^{2}=2 P+1$, which is odd. Therefore, in case (iv.) $a^{2}-b^{2}$
is odd.

Problem 5: (Section 1.2 Exercise 16) Let x be a real number. Find a necessary and sufficient condition for $x+\frac{1}{x} \geq 2$. Prove your answer.

Solution:

First, we notice that $x \neq 0$ otherwise the function $\frac{1}{x}$ is undefined. Trying several values of x we can make a conjecture that the condition is $x>0$. To prove the statement : $x>0$ is necesary and sufficient condition for $x+\frac{1}{x} \geq 2$ we need two parts.

Part i: ($x>0$ is sufficient.)
Assume that $x>0$ and show that then $x+\frac{1}{x} \geq 2$.
proof: since $x>0$, multiply both sides of the inequality we wish to prove by x and simplify. We get

$$
\begin{gathered}
x+\frac{1}{x} \geq 2 \\
x\left(x+\frac{1}{x}\right) \geq 2 x \\
x^{2}+1 \geq 2 x \\
x^{2}-2 x+1 \geq 0 \\
(x-1)^{2} \geq 0
\end{gathered}
$$

The last inequality is true for any x , and since for $x>0$ the last one is equivalent to the first one $x+\frac{1}{x} \geq 2$ then the first one is also true for $x>0$.

Part ii. ($x>0$ is necessary.)
Assuume that $x+\frac{1}{x} \geq 2$ and show that $x>0$. We would rather proof the contrapositive: $x<0$ implies $x+\frac{1}{x}<2$. But this one it true because for $x<0 x+\frac{1}{x}<0$ and $0<2$.

Problem 6: (Section 1.2 Exercise 21) Let $n=a b$ be the product of positive integers a and b. Prove that either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

Solution:

Proof: Suppose $a \leq b, a$ and b are positive integers. Then

$$
\begin{gathered}
a a \leq a b=n \\
a^{2} \leq n \\
a \leq \sqrt{n}
\end{gathered}
$$

Note that since $a>0$ then $n>0$. Since we arbitrarily assigned $a \leq b, b \leq a$ is also possible. If $b \leq a$, the proof is exactly that same as the aboveexcept that we need to switch
the notation a and b. The conclusion will become $b \leq \sqrt{n}$. Therefore, either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$.

Problem 7: (Section 1.2 Exercise 25) Find a proof or exhibit a counterexample to each of the following statements.
(b.) a an even integer $\rightarrow \frac{1}{2} a$ an even integer.
(d.) If a and b are real numbers with $a+b$ rational, then a and b are rational.

Solution:

(b.) Counterexample: Let $a=6$, then $\frac{1}{2}(a)=\frac{1}{2}(6)=3$, which is an integer but it is odd.
(d.) Counterexample: Let $a=\sqrt{2}+1, b=-\sqrt{2}+1$, then $a+b=(\sqrt{2}+1)+(-\sqrt{2}+1)=$ 2 , which is rational. But obviously neither a nor b is rational.

Problem 8: (Section 1.2 Exercise 26) Suppose $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are triangles with pairwise equal angles; that is $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$, and $\angle C=\angle C^{\prime}$. Then it is a well-known result in Euclidean geometry that the triangles have pairwise proportional sides (the triangles are similar). Does the same property hold for polygons with more than three sides? Give a proof or provide a counterexample.

Solution:

Counterexample: Square and rectangle have same angles all equal to $\pi / 2$ but sides are not proportional.

Problem 9: (Section 5.1 Exercise 3) Prove that it is possible to fill an order for $n \geq 32$ pounds of fish given bottomless wheelbarrows full of 5 -pound and 9-pound fish.

Solution:

Proof: $\mathrm{P}(\mathrm{n}): " n=5 m+9 l, m$ and l are some non-negative integers, $\forall n \geq 32$ "

$$
\begin{array}{ll}
P(32): 32=5(1)+9(3) & m=1, l=3 \\
P(33): 33=5(3)+9(2) & m=3, l=2 \\
P(34): 34=5(5)+9(1) & m=5, l=1 \\
P(35): 35=5(7)+9(0) & m=7, l=0 \\
P(36): 36=5(0)+9(4) & m=0, l=4
\end{array}
$$

We've shown that $P(32) \wedge P(33) \wedge P(34) \wedge P(35) \wedge P(36)$ is True.
We assume that $P(k) \wedge P(k+1) \wedge P(k+2) \wedge P(k+3) \wedge P(k+4)$ is True, which means:

$$
\begin{gathered}
P(k): k=5 m+9 l, \\
P(k+1): k+1=5 m+9 l, \\
P(k+2): k+2=5 m+9 l, \\
P(k+3): k+3=5 m+9 l, \\
P(k+4): k+4=5 m+9 l,
\end{gathered}
$$

where m and l are some non-negative integers. Then

$$
P(k+5): k+5=5 m+9 l+5=5(m+1)+9 l=5 m^{\prime}+9 l^{\prime}
$$

where $m^{\prime}=m+1, l^{\prime}=l$

$$
P(k+6): k+6=(k+1)+5=5 m+9 l+5=5 m^{\prime}+9 l^{\prime}
$$

where $m^{\prime}=m+1, l^{\prime}=l$

$$
P(k+7): k+7=(k+2)+5=5 m+9 l+5=5 m^{\prime}+9 l^{\prime}
$$

where $m^{\prime}=m+1, l^{\prime}=l$

$$
P(k+8): k+8=(k+3)+5=5 m+9 l+5=5 m^{\prime}+9 l^{\prime}
$$

where $m^{\prime}=m+1, l^{\prime}=l$

$$
P(k+9): k+9=(k+4)+5=5 m+9 l+5=5 m^{\prime}+9 l^{\prime}
$$

where $m^{\prime}=m+1, l^{\prime}=l$
That is, $P(k+5) \wedge P(k+6) \wedge P(k+7) \wedge P(k+8) \wedge P(k+9)$ is also True. Therefore, $P(n)$ is True for $\forall n \geq 32$

Problem 10: (Section 5.1 Exercise 4) Use mathematical induction to prove the truth of each of the following assertions for all $n \geq 1$.
(b.) $n^{3}+2 n$ is divisible by 3 .
(d.) $5^{n}-1$ is divisible by 4 .
(e.) $8^{n}-3^{n}$ is divisible by 5 .

Solution:

(b.)

Proof:

Step 1:

$P(n): n^{3}+2 n$ is divisible by 3 .

$$
\begin{gathered}
1^{3}+2(1)=3 \\
\frac{3}{3}=1
\end{gathered}
$$

So $P(1)$ is True

Step 2:

Assume $P(k)$ is True. That is $k^{3}+2 k=3 q, q$ is an integer. Then

$$
\begin{gathered}
\quad(k+1)^{3}+2(k+1) \\
=k^{3}+3 k^{2}+3 k+1+2 k+2 \\
=\left(k^{3}+2 k\right)+\left(3 k^{2}+3 k+3\right) \\
=3 q+3\left(k^{2}+k+1\right) \\
=3\left(q+k^{2}+k+1\right)
\end{gathered}
$$

$q+k^{2}+k+1$ is also an integer, which shows that $(k+1)^{3}+2(k+1)$ is also divisible by 3.

Step3:

Since $P(1)$ is True and all implications $P(k) \rightarrow P(k+1)$ are True, then $P(n)$ is True for all $n \geq 1$.
(d.)

Proof:

Step 1:
$P(n): 5^{n}-1$ is divisible by 4 .

$$
\begin{gathered}
5^{1}-1=4 \\
\frac{4}{4}=1
\end{gathered}
$$

So $P(1)$ is True
Step 2:
Assume $P(k)$ is True. That is $5^{k}-1=4 P, P$ is an integer. Then

$$
\begin{gathered}
5^{k+1}-1=(5) 5^{k}-1 \\
=5(4 P+1)-1
\end{gathered}
$$

$$
\begin{gathered}
=20 P+4 \\
=4(5 P+1)
\end{gathered}
$$

Obviously, $5 P+1$ is an integer. Therefore, $5^{k+1}-1$ is also divisible by 4 .

Step 3:

Since $P(1)$ is True, and all implications $P(k) \rightarrow P(k+1)$ are True, then $P(n)$ is generally True for all $n \geq 1$.
(e.)

Proof:

Step 1:

$P(n): 8^{n}-3^{n}$ is divisible by 5 .

$$
\begin{gathered}
8^{1}-3^{1}=8-3 \\
=5 \\
\frac{5}{5}=1
\end{gathered}
$$

So $P(1)$ is True.
Step 2:
Assume $P(k)$ is true. Therefore, $8^{k}-3^{k}=5 m, m$ is an integer. Then

$$
\begin{gathered}
8^{k+1}-3^{k+1}=(8) 8^{k}-(3) 3^{k} \\
=(3+5) 8^{k}-(3) 3^{k} \\
=(3) 8^{k}-(3) 3^{k}+(5) 8^{k} \\
=3\left(8^{k}-3^{k}\right)+(5) 8^{k} \\
=3(5 m)+(5) 8^{k} \\
=5\left(3 m+8^{k}\right)
\end{gathered}
$$

$3 m+8^{k}$ is an integer, provided that m and k are integers. Thus, $8^{k+1}-3^{k+1}$ is divisible by 5 .

Step 3:

Since $P(1)$ is true and all of the implications $P(k) \rightarrow P(k+1)$ are true, thus $P(n)$ is True for all $n \geq 1$.

Problem 11: (Section 5.1 Exercise 5)
(b.) Prove by mathematical induction that

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for any natural number n.
(c.) Use the results of (a.) and (b.) to establish that

$$
(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+\cdots+n^{3}
$$

for all $n \geq 1$.

Solution:

(b.)

Proof:

Step 1:

$P(n): 1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$

$$
\begin{gathered}
\frac{1^{2}(1+1)^{2}}{4}=\frac{1^{2} 2^{2}}{4} \\
=1 \\
=1^{3}
\end{gathered}
$$

So $P(1)$ is True.

Step 2:

Assume that $P(k)$ is True, that is

$$
1^{3}+2^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

Then

$$
\begin{gathered}
1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
=(k+1)^{2}\left(\frac{k^{2}}{4}+k+1\right) \\
(k+1)^{2}\left(\frac{1}{4}\left(k^{2}+4 k+4\right)\right. \\
\frac{(k+1)^{2}(k+2)^{2}}{4} \\
\frac{(k+1)^{2}[(k+1)+1]^{2}}{4}
\end{gathered}
$$

We've shown if $P(k)$ holds then $P(k+1)$ holds.
Step 3:
Because $P(1)$ is True and all the implications $P(k) \rightarrow P(k+1)$ are True. $P(n)$ is True for all natural number n.
(c.)

From (a.) we know that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Therefore,

$$
(1+2+3+\cdots+n)^{2}=\left[\frac{n(n+1)}{2}\right]^{2}=\frac{n^{2}(n+1)^{2}}{4}
$$

for $n \geq 1$
From (b.), we know that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for $n \geq 1$
Thus,

$$
(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for $n \geq 1$.

