Assignment 2 Solutions

Problem 1: (Section 1.4 Question 2) Simplify each of the following statements.
(c.) $[(p \rightarrow q) \vee(q \rightarrow r)] \wedge(r \rightarrow s)$

Solution:

(c.)

$$
\begin{gathered}
\Longleftrightarrow[(\neg p \vee q) \vee(\neg q \vee r)] \wedge(r \rightarrow s) \\
\Longleftrightarrow[\neg p \vee q \vee \neg q \vee r] \wedge(r \rightarrow s) \\
\Longleftrightarrow[(\neg p \vee r) \vee(\neg q \vee q)] \wedge(r \rightarrow s)] \\
\Longleftrightarrow[(\neg p \vee r) \vee 1] \wedge(r \rightarrow s) \\
\Longleftrightarrow 1 \wedge(r \rightarrow s) \\
\Longleftrightarrow \\
\Longleftrightarrow r \rightarrow s \\
\Longleftrightarrow \neg r \vee s
\end{gathered}
$$

The above is determined using the following rules:

$$
\begin{gathered}
p \rightarrow q \Longleftrightarrow \neg p \vee q \\
\neg q \vee q \Longleftrightarrow 1 \\
1 \wedge q \Longleftrightarrow q
\end{gathered}
$$

Problem 2: (Section 1.4 Question 3) Using truth tables, verify the following absorption properties.
(b.) $(p \wedge(p \vee q)) \Longleftrightarrow p$

Solution:

(b.)				
p	q	$p \vee q$	$p \wedge(p \vee q)$	$p \leftrightarrow(p \wedge(p \vee q))$
T	T	T	T	T
T	F	T	T	T
F	T	T	F	T
F	F	F	F	T

$p \leftrightarrow(p \wedge(p \vee q))$ is a tautology, since always true, therefore, $p \Longleftrightarrow p \wedge(p \vee q)$
Problem 3: (Section 1.4 Question 4) Using the properties in the text together with the absorption properties given in Exercise 3, establish each of the following logical equivalences.
(b.) $[p \rightarrow(q \rightarrow r)] \Longleftrightarrow[(p \wedge(\neg r)) \rightarrow(\neg q)]$
(c.) $[\neg(p \leftrightarrow q)] \Longleftrightarrow[p \leftrightarrow(\neg q)]$

Solution:

The idea in this question is to work out left side and right side separately, trying to match the results.
(b.) Left Hand Side

$$
\begin{aligned}
& \Longleftrightarrow p \rightarrow(\neg q \vee r) \\
& \Longleftrightarrow \neg p \vee(\neg q \vee r)
\end{aligned}
$$

Right Hand Side

$$
\begin{aligned}
& \Longleftrightarrow \neg(p \wedge \neg r) \vee(\neg q) \\
& \Longleftrightarrow(\neg p \vee r) \vee(\neg q) \\
& \Longleftrightarrow \neg p \vee(r \vee \neg q) \\
& \Longleftrightarrow \neg p \vee(\neg q \vee r)
\end{aligned}
$$

Now the left hand side is equal to the right hand side. $\neg p \vee(\neg q \vee r) \Longleftrightarrow \neg p \vee(\neg q \vee r)$ Therefore, $[p \rightarrow(q \rightarrow r)] \Longleftrightarrow[(p \wedge(\neg r)) \rightarrow(\neg q)]$
(c.) Left Hand Side

$$
\begin{aligned}
& \Longleftrightarrow \neg \neg(p \rightarrow q) \wedge(q \rightarrow p)] \\
& \Longleftrightarrow \neg[(\neg p \vee q) \wedge(\neg q \vee p)] \\
& \Longleftrightarrow(p \wedge \neg q) \vee(q \wedge \neg p)
\end{aligned}
$$

Right Hand Side

$$
\begin{gathered}
\Longleftrightarrow(p \rightarrow \neg q) \wedge(\neg q \rightarrow p) \\
\Longleftrightarrow(\neg p \vee \neg q) \wedge(q \vee p) \\
\Longleftrightarrow((\neg p \vee \neg q) \wedge q) \vee((\neg p \vee \neg q) \wedge p) \\
\Longleftrightarrow(\neg p \wedge q) \vee(\neg q \wedge q) \vee(\neg p \wedge p) \vee(\neg q \wedge p) \\
\Longleftrightarrow(\neg p \wedge q) \vee 0 \vee 0 \vee(\neg q \wedge p) \\
\Longleftrightarrow(\neg p \wedge q) \vee(\neg q \wedge p) \\
\Longleftrightarrow(p \wedge \neg q) \vee(q \wedge \neg p)
\end{gathered}
$$

Now the left hand side is equal to the right hand side. $(p \wedge \neg q) \vee(q \wedge \neg p) \Longleftrightarrow(p \wedge \neg q) \vee$ $(q \wedge \neg p)$

Therefore, $[\neg(p \leftrightarrow q) \Longleftrightarrow p \leftrightarrow(\neg q)]$
Problem 4: (Section 1.4 Question 8) Express each of the following statements in disjunctive normal form.
(c.) $p \rightarrow q$
(d.) $(p \rightarrow q) \wedge(q \wedge r)$

Solution:

(c.)

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Therefore the disjunction normal form is: $(p \wedge q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)$. (d.)

p	q	r	$p \rightarrow q$	$q \wedge r$	$(p \rightarrow q) \wedge(q \wedge r)$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	F	F
T	F	F	F	F	F
F	T	T	T	T	T
F	T	F	T	F	F
F	F	T	T	F	F
F	F	F	T	F	F

Therefore the disjunction normal form is: $(p \wedge q \wedge r) \vee(\neg p \wedge q \wedge r)$.
Problem 5: (Review Exercises Chapter 1 Question 14) Determine whether or not each of the following arguments is valid.
(a.)

$$
\begin{gathered}
\neg((\neg p) \wedge q) \\
\neg(p \wedge r) \\
\frac{r \vee s}{q \rightarrow s}
\end{gathered}
$$

(b.)

$$
\begin{gathered}
p \vee(\neg q) \\
(t \vee s) \rightarrow(p \vee r) \\
(\neg r) \vee(t \wedge s) \\
\frac{p \leftrightarrow(t \vee s)}{\wedge r) \rightarrow(q \wedge r)}
\end{gathered}
$$

Solution:

Idea: If there are such values of p, q, r, s that all assumptions are True(T), but conclusion is False(F) then the argument is Invalid. Otherwise it is Valid. Let's try to find such values.
(a.) When the conclusion $(q \rightarrow s)$ is False(F$)$ is when $q=T$ and $s=F$.

If $q=T$, then the first assumption is T only for $p=T$, then $\neg p=T, \neg p \wedge q=F$, $\neg(\neg p \wedge q)=T$

If $p=T$, then the second asumption is T only for $r=F$, then $p \wedge r=F, \neg(p \wedge r)=T$.
If $r=F$ and $s=F$ then the third assumption is F .
Thus, all three assumptions can't be True at the same time when conclusion is F.
Therefore, the argument is Valid.
(b.) Partial Truth Table

p	q	r	s	t	$p \vee(\neg q)$	$(t \vee s) \rightarrow(p \vee r)$	$(\neg r) \vee(t \vee s)$	$p \leftrightarrow(t \vee s)$	$(p \wedge r) \rightarrow(q \wedge r)$
T	F	T	T	T	T	T	T	T	F

By referring to the partial truth table the concluion is False while all assumptions are True. Therefore, the argument is Not Valid

Problem 6: (Review Exercises Chapter 1 Question 15) Discuss the validity of the argument $p \wedge q$.

$$
(\neg p) \wedge r
$$

Purple toads live on Mars.

Solution:

$(p \wedge q) \wedge((\neg p) \wedge r)$
$\Longleftrightarrow p \wedge q \wedge \neg p \wedge r \Longleftrightarrow q \wedge r \wedge 0 \Longleftrightarrow 0$
Since the assumption is always False because of the contradiction the implication is True.
Therefore, the argument is Valid.

Problem 7: (Review Exercises Chapter 1 Question 16) Determine the validity of each of the following arguments. If the argument is one of those listed in the text, name it.
(a.)

Either I wear a red tie or I wear blue socks.
Either I wear a green hat or I do not wear blue socks.
Either I wear a red tie or I wear a green hat.
(b.)

If I like mathematics, then I will study. Either I don't study or I pass mathematics. If I don't pass mathematics, then I don't graduate.

If I graduate, then I like mathematics.

Solution:

(a.) $p: 1$ wear a red tie.
q : 1 wear blue socks.
$r: 1$ wear a green hat.
The argument is

$$
\begin{gathered}
p \vee q \\
\frac{r \vee \neg q}{p \vee r}
\end{gathered}
$$

Valid by resolution since

$$
\begin{gathered}
p \vee q \\
r \vee \neg q \\
\text { gives } \\
p \vee r
\end{gathered}
$$

(b.) $p: 1$ like mathematics.
$q: 1$ studies.
$r: 1$ passes mathematics.
$s: 1$ graduates.
The argument is

$$
\begin{gathered}
p \rightarrow q \\
\neg q \vee r \Longleftrightarrow q \rightarrow r \\
\neg r \rightarrow \neg s \Longleftrightarrow s \rightarrow r \\
\hline s \rightarrow p
\end{gathered}
$$

Partial Truth Table

p	q	r	s	$p \rightarrow q$	$q \rightarrow r$	$s \rightarrow r$	$s \rightarrow p$
F	F	T	T	T	T	T	F

The partial truth table shows that the argument is Not Valid since the rguments are True while the conclusion is False.

