Assignment1 Solutions

Problem 1:Classify each of the following statements as true or false and explain your answers.
(b.)" $4 \neq 2+2$ and $7<\sqrt{50}$ "
(d.)" $4=2+2 \leftrightarrow 7<\sqrt{50}$ "
(f.)" $4 \neq 2+2 \leftrightarrow 7<\sqrt{50}$ "
(h.) "The area of a circle of radius r is $2 \pi r$ or its circumference is πr^{2} "

Solution:

(b.) This statement is False.

Set " $4 \neq 2+2 "$ to p, and " $7<\sqrt{50 "}$ to q. So p is False and q is True.
Therefore, $p \wedge q$ is False.
(d.) This statement is True.

Since " $4=2+2$ " is True and " $7<\sqrt{50}$ " is True.
Therefore, " $4=2+2 \leftrightarrow 7<\sqrt{50} "$ is True.
(f.) This statement is False.

Since $" 4 \neq 2+2 "$ is False and $" 7<\sqrt{50} "$ is True.
Therefore, $" 4 \neq 2+2 \leftrightarrow 7<\sqrt{50} "$ is False.
The only way that the biconditional $q \leftrightarrow p$ is true is when both statement have the same truth value.
(h.)This statement is False.

Since the statement "The area of a circle of radius r is $2 \pi r$ is False and "its circumference is $\pi r^{2} "$ is False.

This therefore causes $p \vee q$ to be False.

Problem 2: Clasify each of the following statements as true or false and explain your answers.
(b.) If a and b are integers with $a-b>0$ and $b-a>0$, then $a=b$.

Solution:

This statement is True.
Since a and b are both integers then both $a-b>0$ and $b-a>0$ are false.
Therefore, $p \rightarrow q$ is true, since p is false it does not matter whether q is true or false.

Problem 3: Write down the negation of each of the following statements in clear and concise English.
(b.) x is a real number and $x^{2}+1=0$.
(d.) Every integer is divisible by a prime.
(f.) There exists a, b, and c such that $(a b) c \neq a(b c)$.

Solution:

(b.) x is not a real number or $x^{2}+1 \neq 0$ (Use DeMorgan's Law)
(d.) There is an integer which is not divisble by a prime
(f.) For all a, b, and $c,(a b) c=a(b c)$. This was determined using $\neg(\exists x p(x)) \leftrightarrow \forall x \neg p(x)$

Problem 4: Write down the converse and the contrapositive of each of the following implications.
(d.) $a b=0 \rightarrow a=0$ or $b=0$.
(f.) If $\triangle B A C$ is a right triangle, then $a^{2}=b^{2}+c^{2}$.

Solution:

(d.)Converse: $a=0$ or $b=0 \rightarrow a b=0$

Contrapositive: $a \neq 0$ and $b \neq 0 \rightarrow a b \neq 0$ (DeMorgan's Law)
(f.) Converse: If $a^{2}=b^{2}+c^{2}$, then $\triangle B A C$ is a right triangle.

Contrapositive: If $a^{2} \neq b^{2}+c^{2}$, then $\triangle B A C$ is not a right triangle.
Problem 5: Rewrite each of the following statements using the quantifiers "for all" and "there exists" as appropriate.
(b.) For real $x, 2^{x}$ is never negative.
(f.) All positive real numbers have real square roots.

Solution:

(b.) There is no real x such that 2^{x} is negative.
(f.) For all positive real numbers its square root is real.

Problem 6: Construct a truth table for each of the following compound statements.
(c.) $\neg(p \wedge(q \vee p)) \leftrightarrow p$.
(e.) $(p \rightarrow(q \rightarrow r)) \rightarrow((p \wedge q) \vee r$.

Solution:

(c.)

p	q	$q \vee q$	$p \wedge(q \vee p)$	$\neg(p \wedge(q \vee p))$	$\neg(p \wedge(q \vee p)) \leftrightarrow p$
T	T	T	T	F	F
T	F	T	T	F	F
F	T	T	F	T	F
F	F	F	F	T	F

(e.)

p	q	r	$q \rightarrow r$	$p \rightarrow(q \rightarrow r)$	$p \wedge q$	$(p \wedge q) \vee r$	$(p \rightarrow(p \rightarrow r)) \rightarrow((p \wedge q) \vee r)$
T	T	T	T	T	T	T	T
T	T	F	F	F	T	T	T
T	F	T	T	T	F	T	T
T	F	F	T	T	F	F	F
F	T	T	T	T	F	T	T
F	T	F	F	T	F	F	F
F	F	T	T	T	F	T	T
F	F	F	T	T	F	F	F

Problem 7: Determine the truth value for $[p \rightarrow(q \wedge(\neg r))] \vee[r \leftrightarrow((\neg s) \vee q)]$ in the case where p, q, r and s are all false.

Solution: | p | q | r | s | $\neg r$ | $q \wedge(\neg r)$ | $p \rightarrow(q \wedge(\neg r)$ | $\neg s$ | $\neg s \vee q$ | $r \leftrightarrow((\neg s) \vee q)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F | F | F | F | T | F | T | T | T | F |

Therefore $[p \rightarrow(q \wedge(\neg r))] \vee[r \leftrightarrow((\neg s) \vee q)]$ is True.
Problem 8:
(a.) Show that $q \rightarrow(p \rightarrow q)$ ia a tautology.
(b.) Show that $[p \wedge q] \wedge[(\neg p) \vee(\neg q)]$ is a contradiction.

Solution:

(a.)

p	q	$p \rightarrow q$	$q \rightarrow(p \rightarrow q)$
T	T	T	T
T	F	F	T
F	T	T	T
F	F	T	T

$q \rightarrow(p \rightarrow q)$ is always True, which means we have a tautology.
(b.)

p	q	$p \wedge q$	$\neg p$	$\neg q$	$(\neg p) \vee(\neg q)$	$[p \wedge q] \vee[(\neg p) \vee(\neg q)]$
T	T	T	F	F	F	F
T	F	F	F	T	T	F
F	T	F	T	F	T	F
F	F	F	T	T	T	F

$[p \wedge q] \wedge[(\neg p) \vee(\neg q)]$ is always False, which means we have a contradiction.
Problem 9: If p and q are statements, then the compound statement $p \vee q$ (often called the exclusive or) is defined to be true if and only if exactly one of p, q is true: that is either p is true or q is true, but not both p and q are true.
(d.) Show that $p \underline{\vee} q$ is logically equivalent to $\neg(p \leftrightarrow q)$

Solution:

p	q	$p \underline{\vee} q$	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$
T	T	F	T	F
T	F	T	F	T
F	T	T	F	T
F	F	F	T	F

$p \underline{\vee} q$ and $\neg(p \leftrightarrow q)$ have the same truth table. So therefore they are logically equivalent, that is $p \underline{\vee} q \longleftrightarrow \neg(p \leftrightarrow q)$.

