Assignment1 Solutions

Problem 1:Classify each of the following statements as true or false and explain your answers.

(b.)" $4 \neq 2 + 2$ and $7 < \sqrt{50}$ " (d.)" $4 = 2 + 2 \leftrightarrow 7 < \sqrt{50}$ " (f.)" $4 \neq 2 + 2 \leftrightarrow 7 < \sqrt{50}$ " (h.) "The area of a circle of radius r is $2\pi r$ or its circumference is πr^2 "

Solution:

(b.) This statement is **False**.

Set " $4 \neq 2 + 2$ " to p, and " $7 < \sqrt{50}$ " to q. So p is False and q is True.

Therefore, $p \wedge q$ is False.

(d.) This statement is **True.**

Since "4 = 2 + 2" is True and " $7 < \sqrt{50}$ " is True.

Therefore, " $4 = 2 + 2 \leftrightarrow 7 < \sqrt{50}$ " is True.

(f.) This statement is **False**.

Since " $4 \neq 2 + 2$ " is False and " $7 < \sqrt{50}$ " is True.

Therefore, " $4 \neq 2 + 2 \leftrightarrow 7 < \sqrt{50}$ " is False.

The only way that the biconditional $q \leftrightarrow p$ is true is when both statement have the same truth value.

(h.) This statement is **False**.

Since the statement "The area of a circle of radius r is $2\pi r$ is False and "its circumference is πr^2 " is False.

This therefore causes $p \lor q$ to be False.

Problem 2: Clasify each of the following statements as true or false and explain your answers.

(b.) If a and b are integers with a - b > 0 and b - a > 0, then a = b.

Solution:

This statement is **True**.

Since a and b are both integers then both a - b > 0 and b - a > 0 are false.

Therefore, $p \rightarrow q$ is true, since p is false it does not matter whether q is true or false.

Problem 3: Write down the negation of each of the following statements in clear and concise English.

(b.) x is a real number and $x^2 + 1 = 0$.

(d.) Every integer is divisible by a prime.

(f.) There exists a, b, and c such that $(ab)c \neq a(bc)$.

Solution:

(b.) x is not a real number or $x^2 + 1 \neq 0$ (Use DeMorgan's Law)

(d.) There is an integer which is not divisible by a prime

(f.) For all a, b, and c, (ab)c = a(bc). This was determined using $\neg(\exists xp(x)) \leftrightarrow \forall x \neg p(x)$

Problem 4: Write down the converse and the contrapositive of each of the following implications.

(d.) $ab = 0 \to a = 0$ or b = 0.

(f.) If $\triangle BAC$ is a right triangle, then $a^2 = b^2 + c^2$.

Solution:

(d.)**Converse:** a = 0 or $b = 0 \rightarrow ab = 0$ **Contrapositive:** $a \neq 0$ and $b \neq 0 \rightarrow ab \neq 0$ (DeMorgan's Law)

(f.) Converse: If $a^2 = b^2 + c^2$, then $\triangle BAC$ is a right triangle. Contrapositive: If $a^2 \neq b^2 + c^2$, then $\triangle BAC$ is not a right triangle.

Problem 5: Rewrite each of the following statements using the quantifiers "for all" and "there exists" as appropriate.

(b.) For real x, 2^x is never negative.

(f.) All positive real numbers have real square roots.

Solution:

(b.) There is no real x such that 2^x is negative.

(f.) For all positive real numbers its square root is real.

Problem 6: Construct a truth table for each of the following compound statements.

(c.) $\neg (p \land (q \lor p)) \leftrightarrow p.$ (e.) $(p \to (q \to r)) \to ((p \land q) \lor r.$

Solution:

	p	q	$q \vee q$	$p \wedge (q \vee p)$	$\neg(p \land (q \lor p))$	$\neg (p \land (q \lor p)) \leftrightarrow p$
	Т	Т	Т	Т	F	F
(c.)	Т	F	Т	Т	F	F
	F	Т	Т	F	Т	F
	F	F	F	F	Т	F

	p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \lor r$	$(p \to (p \to r)) \to ((p \land q) \lor r)$
	Т	Т	Т	Т	Т	Т	Т	Т
	Т	Т	F	F	F	Т	Т	Т
	Т	F	Т	Т	Т	F	Т	Т
(e.)	Т	F	F	Т	Т	F	F	F
	F	Т	Т	Т	Т	F	Т	Т
	F	Т	F	F	Т	F	F	F
	F	F	Т	Т	Т	F	Т	Т
	F	F	F	Т	Т	F	F	F

Problem 7: Determine the truth value for $[p \to (q \land (\neg r))] \lor [r \leftrightarrow ((\neg s) \lor q)]$ in the case where p, q, r and s are all false.

Solution:	p	q	r	s	$\neg r$	$q \wedge (\neg r)$	$p \to (q \land (\neg r)$	$\neg s$	$\neg s \lor q$	$r \leftrightarrow ((\neg s) \lor q)$
	F	F	F	F	Т	F	Т	Т	Т	F

Therefore $[p \to (q \land (\neg r))] \lor [r \leftrightarrow ((\neg s) \lor q)]$ is **True**.

Problem 8:

(a.) Show that $q \to (p \to q)$ is a tautology. (b.) Show that $[p \land q] \land [(\neg p) \lor (\neg q)]$ is a contradiction.

Solution:

	p	q	$p \rightarrow q$	$q \to (p \to q)$
(a.)	Т	Т	Т	Т
	Т	F	F	Т
	F	Т	Т	Т
	F	F	Т	Т

 $q \rightarrow (p \rightarrow q)$ is always True, which means we have a tautology.

	p	q	$p \wedge q$	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$	$[p \land q] \lor [(\neg p) \lor (\neg q)]$
	Т	Т	Т	F	F	F	F
(b.)	Т	F	F	F	Т	Т	F
	F	Т	F	Т	F	Т	F
	F	F	F	Т	Т	Т	F

 $[p \land q] \land [(\neg p) \lor (\neg q)]$ is always False, which means we have a contradiction.

Problem 9: If p and q are statements, then the compound statement $p \ eq q$ (often called the exclusive or) is defined to be true if and only if exactly one of p, q is true: that is either p is true or q is true, but not both p and q are true.

(d.) Show that $p \leq q$ is logically equivalent to $\neg(p \leftrightarrow q)$

Solution:

p	q	$p \stackrel{\vee}{=} q$	$p \leftrightarrow q$	$\neg(p \leftrightarrow q)$
Т	Т	F	Т	F
Т	F	Т	F	Т
F	Т	Т	F	Т
F	F	F	Т	F

 $p \ equivalent$, $p \ equivalent$, and $\neg(p \leftrightarrow q)$ have the same truth table. So therefore they are logically equivalent, that is $p \ equivalent q \leftrightarrow \neg(p \leftrightarrow q)$.