## MUN Undergraduate Mathematics Competition. September 23, 2010.

1. How many arrangements of the word graceful are there with the letter $\mathbf{g}$ preceding the letter $\mathbf{f}$ ? (An arrangement doesn't have to be a meaningful word.)
2. Three semicircles have the sides of a right triangle as their diameters as shown. Prove the following relation between the areas of the painted regions:

$$
A_{1}+A_{2}=A_{\triangle}
$$


3. Determine all integer solutions $(x, y)$ of the equation

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{6}
$$

4. In a group of nine students nobody is taking more than 3 courses. Among any three students, two have one course in common. Show that there is a course taken by at least three students.
5. Given that a series with positive terms $\sum_{n=1}^{\infty} a_{n}$ converges, prove that the series $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges as well.
6. Let $f_{1}, f_{2}, \ldots, f_{n}$ be differentiable linearly independent functions on the real line. Prove that it is possible to choose $n-1$ linearly independent functions among $f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}$.
(Functions $f_{1}, \ldots, f_{n}$ are called linearly independent if the equality $\sum_{k=1}^{n} c_{k} f_{k}(x)=0$ for all $x$ with some constants $c_{1}, c_{2}, \ldots, c_{n}$ is only possible when $c_{1}=c_{2}=\ldots c_{n}=0$.)
7. Let $A$ be an $n \times n$ matrix with diagonal entries $A_{i i}=1$. Suppose $A$ has $n$ real nonnegative eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \geq 0$. Prove that

$$
0 \leq \operatorname{det} A \leq 1
$$

