MUN Undergraduate Mathematics Competition. September 24, 2009.
This competition consists of 7 problems and is open to all undergraduate students. Authors of the best papers will be considered for participation in the Fall 2009 APICS mathematics competition and conference.

1. Show that

$$
(\sqrt{5}+2)^{1 / 3}-(\sqrt{5}-2)^{1 / 3}
$$

is a rational number and find its value.
2. Prove that

$$
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{99}{100}<\frac{1}{\sqrt{101}}
$$

3. Find the greatest common divisor of $(14!)+1$ and $(16!)+10$. Justify your answer.
4. Let $A B C D$ be an isosceles trapezoid with sides $|A B|=|C D|=F_{n},|B C|=F_{n-1}$, $|A D|=F_{n+1}$, where F_{k} are Fibonacci numbers: $F_{1}=F_{2}=1, F_{k+1}=F_{k}+F_{k-1}$.

Find the area of the trapezoid and express it in terms of a single Fibonacci number.
5. Consider two parallel planes Π_{1} and Π_{2}. Let D be a disk in Π_{1} of radius r and center O. Let I be a straight segment in Π_{2} of length l and mid-point M. Assume that the segment $O M$ is perpendicular to the planes and has length d. Consider the solid S formed by all segments $X Y$, where X belongs to D and Y belongs to I :
(a) Describe the cross-section of S by the plane parallel to Π_{1} and Π_{2} half-way between them;
(b) Find the volume of S in terms of r, l, d.
6. Let A_{n} be the $n \times n$ matrix whose diagonal entries are 0 and all remaining entries are 1. Find $\operatorname{det} A_{n}$ as a function of n.
7. Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a decreasing sequence such that $a_{n} \geq 0$ for all n and $\sum_{n=1}^{\infty} a_{n}$ converges. Prove that

$$
\lim _{n \rightarrow \infty} n a_{n}=0
$$

