1. Write down Laurent or Taylor series expansion for a function $f(z)$. What statements do you know about their convergence? What are the properties of the function to which they converge?
2. Let $\sum_{n=0}^{\infty} b_{n} z_{0}^{n}=S$ and $\sum_{n=0}^{\infty} c_{n} z_{0}^{n}=T$. Find the sum $\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left(\bar{b}_{k} \bar{c}_{n-k}\right) \bar{z}_{0}^{n}\right.$.
3. True of false? Explain.

Function defined as $f(z)=\frac{\sin z}{z^{2}-\pi^{2}}$ for $z \neq \pm \pi$ and $f(z)=-(2 \pi)^{-1}$ for $z= \pm \pi$ is entire.
4. Find series expansion in terms of integer powers of $z-a$ for given function $f(z)$ and complex number a. Find domain of convergence. Which of them are power series?
(a) $f(z)=\frac{z^{2}+1}{z^{6}+2}, a=0$.
(b) $f(z)=z^{5} \cosh \left(z^{-4}\right), a=0$.
(c) $f(z)=\sin (z), a=\pi / 2$.
(d) $f(z)=\sinh z, a=-i \pi / 2$.
(e) $f(z)=\left(5 z+z^{2}\right)^{-1}, a=0$.
5. Find Laurent series representation centered at zero in each domain of analyticity for the function

$$
f(z)=\frac{z^{2}+8 z+2}{z^{2}+7 z+6} .
$$

6. Let $f(z)=(z-1)^{-1} \log (z)$ for $z \neq 1$ and $f(1)=1$. Explain why this function is analytic for $-\pi<\operatorname{Arg}(z)<\pi$ and $0<|z|<\infty$.
7. Consider Bessel functions of the first kind $J_{n}(a)$ defined as

$$
J_{n}(a)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n t+i a \sin t} d t, \quad n=0, \pm 1, \pm 2, \ldots
$$

where a is a complex number. Show that the following series expansion is valid

$$
\exp \left(b\left(\frac{z^{2}-1}{z}\right)\right)=\sum_{n=-\infty}^{\infty} J_{n}(2 b) z^{n}, \quad 0<|z|<\infty
$$

Hint: Use integral formula for coefficients in Laurent series and unit contour of integration $z=e^{i t}$ 。

Extra point problem. Show that Bessel function $J_{n}(z)$ solves the Bessel equation

$$
z^{2} y^{\prime \prime}+z y^{\prime}+\left(z^{2}-n^{2}\right) y=0
$$

Show that Bessel equation appears when you solve the following Helmholz equation

$$
U_{x x}+U_{y y}=-k^{2} U, \quad k=\mathrm{const}
$$

by the separation of variables method in polar coordinates.

