1. Explain how the fundamental theorem of algebra follows from the Liouville's theorem.
2. Explain how Maximum Modulus Principle follows from Gauss' Mean Value theorem.
3. Evaluate the contour integral.
(a) $\oint_{|z|=3} \frac{\cosh (z)}{(z-i)^{4}} d z$.
(b) $\oint_{C} \frac{e^{-2 z}}{(z-1)^{3}} d z$ where C is a rectangle with vertices at $\pm 2 \pm 2 i$.
(c) $\oint_{|z|=1} \frac{\tan (z / 2)}{(z+\pi / 2)^{2}} d z$.
(d) $\oint_{|z|=2} \frac{\tan (z / 2)}{(z+\pi / 2)^{2}} d z$.
4. Let $0<a<R<b$ be real numbers. Evaluate

$$
\oint_{|z|=R} \frac{1}{(z-a)^{n}(z-b)} d z, \quad n=1,2,3 \ldots
$$

5. Let

$$
F_{n}(z)=\frac{1}{n!2^{n}} \frac{d^{n}}{d z^{n}}\left(z^{2}-1\right)^{n}, \quad n=0,1,2,3, \ldots
$$

(a) show that $F_{n}(z)$ is a polynomial of degree n. (These are Legendre polynomials.)
(b) show that $F_{n}(z)$ can be expressed in the integral form

$$
F_{n}\left(z_{0}\right)=\frac{1}{2^{n+1} \pi i} \oint_{\left|z-z_{0}\right|=r} \frac{\left(z^{2}-1\right)^{n}}{\left(z-z_{0}\right)^{n+1}} d z
$$

(c) use (b) to find $F_{n}(\pm 1)$.
6. Consider $f(z)=e^{z}$ and rectangular region $R: 0 \leq x \leq 1,0 \leq y \leq \pi$.
a) Find maximum and minimum values of $u(x, y)=\operatorname{Re}(f(z))$ in the region R as well as the point where each extremum is reached.
b) Find maximum and minimum values of $v(x, y)=\operatorname{Im}(f(z))$ in the region R as well as the point where each extremum is reached.
7. Let $f(z)=u(x, y)+i v(x, y)$ be continuous on a closed bounded region R. Suppose it is analytic but not constant in the interior of R. Show that functions $u(x, y)$ and $v(x, y)$ both have their max and minimum values on the boundary of R but not in the interior.

