Math 3210 Due Tue Nov 3

Assignment #6

1. Draw the curve in the complex plane and classify it.

You options are: simple (no self intersections); differentiable (z'(t) is continuous); smooth (differentiable and $z'(t) \neq 0$); contour (union of finite number of smooth arcs); closed contour).

- (a) $z(t) = 1 + 3\cos t + i(2 + 3\sin t), t \in [0, \pi/2]$
- (b) $z(t) = 2 + i\cos(2t), t[0,\pi].$
- (c) $z(t) = t + it^2$ for $t \in [0, 2]$ and $z(s) = (2 s) + i(4 2s), s \in [0, 2]$.
- 2. Let C be a contour given by $\{z(t), a \leq t \leq b\}$. Denote by -C the contour which consists of the same points as C but has an opposite direction.
 - (a) Show that -C can be described as $\{z(-t), -b \le t \le -a\}$.

(b) Prove that $\int_C f(z)dz = -\int_{-C} f(z)dz$ under the assumption that f(z(t)) is a piece-wise continuous function on [a, b].

3. Let

$$z_1(t) = R_0 e^{-it}, \quad z_2(s) = \sqrt{R_0^2 - s^2} + is, \quad z_3(q) = q + i\sqrt{R_0^2 - q^2},$$

where $R_0 > 0$ is a constant and t, s, q are real parameters. When the interval for t is given, $z_1(t)$ describes a curve in the complex plane. Give alternative descriptions of the same curve in terms of both $z_2(s)$ or $z_3(q)$ and find corresponding interval(s) for s and q.

(a) $0 < t < \pi/6$, (b) $-\pi/2 < t < -\pi/4$, (c) $-3\pi/4 < t < \pi/2$.

4. Evaluate contour integral along curve $C = \{z(t), a \le t \le b\}$.

- (a) $\int_C (z^3 + 3z 2) z^{-2} dz, \ z(t) = 3e^{2it}, \ 0 \le t \le \pi$
- (b) $\int_C x|z|^{-2} dz, \ z(t) = \sqrt{3}e^{-it}, \ 0 \le t \le 4\pi$
- (c) $\int_C \frac{1}{z} + \frac{1}{\bar{z}} dz, \ z(t) = \sqrt{3}e^{-it}, \ 0 \le t \le 4\pi$
- (d) $\int xy + i(y^2 x^2)/2dz$ with respect to piece-wise linear contour connecting points from z = 2i to z = 1 and to z = -1.

5. Without evaluating the integral identify if the following estimate is True or False. Explain.

(a) Let
$$C = \{2e^{2it}, 0 \le t \le \pi/4\}$$
. Check if $\left|\int_C \frac{z^2 + 2 + z}{z^5 + z + 1} dz\right| \le \frac{4\pi}{15}$.
(b) Let C be a line segment from $z = -1 + 2i$ to $z = 1$. Check if $\left|\int_C \frac{dz}{(z+1)^4}\right| \le \frac{1}{\sqrt{2}}$.

6. Extra Points Problem

Show that if $11z^{10} + 10iz^9 + 10iz - 11 = 0$ then |z| = 1.