1. Draw the curve in the complex plane and classify it.

You options are: simple (no self intersections); differentiable ($z^{\prime}(t)$ is continuous); smooth (differentiable and $z^{\prime}(t) \neq 0$); contour (union of finite number of smooth arcs); closed contour).
(a) $z(t)=1+3 \cos t+i(2+3 \sin t), t \in[0, \pi / 2]$
(b) $z(t)=2+i \cos (2 t), t[0, \pi]$.
(c) $z(t)=t+i t^{2}$ for $t \in[0,2]$ and $z(s)=(2-s)+i(4-2 s), s \in[0,2]$.
2. Let C be a contour given by $\{z(t), a \leq t \leq b\}$. Denote by $-C$ the contour which consists of the same points as C but has an opposite direction.
(a) Show that $-C$ can be described as $\{z(-t),-b \leq t \leq-a\}$.
(b) Prove that $\int_{C} f(z) d z=-\int_{-C} f(z) d z$ under the assumption that $f(z(t))$ is a piece-wise continuous function on $[a, b]$.
3. Let

$$
z_{1}(t)=R_{0} e^{-i t}, \quad z_{2}(s)=\sqrt{R_{0}^{2}-s^{2}}+i s, \quad z_{3}(q)=q+i \sqrt{R_{0}^{2}-q^{2}}
$$

where $R_{0}>0$ is a constant and t, s, q are real parameters. When the interval for t is given, $z_{1}(t)$ describes a curve in the complex plane. Give alternative descriptions of the same curve in terms of both $z_{2}(s)$ or $z_{3}(q)$ and find corresponding interval(s) for s and q.
(a) $0<t<\pi / 6$, (b) $-\pi / 2<t<-\pi / 4$, (c) $-3 \pi / 4<t<\pi / 2$.
4. Evaluate contour integral along curve $C=\{z(t), a \leq t \leq b\}$.
(a) $\int_{C}\left(z^{3}+3 z-2\right) z^{-2} d z, z(t)=3 e^{2 i t}, 0 \leq t \leq \pi$
(b) $\int_{C} x|z|^{-2} d z, z(t)=\sqrt{3} e^{-i t}, 0 \leq t \leq 4 \pi$
(c) $\int_{C} \frac{1}{z}+\frac{1}{\bar{z}} d z, z(t)=\sqrt{3} e^{-i t}, 0 \leq t \leq 4 \pi$
(d) $\int x y+i\left(y^{2}-x^{2}\right) / 2 d z$ with respect to piece-wise linear contour connecting points from $z=2 i$ to $z=1$ and to $z=-1$.
5. Without evaluating the integral identify if the following estimate is True or False. Explain.
(a) Let $C=\left\{2 e^{2 i t}, 0 \leq t \leq \pi / 4\right\}$. Check if $\left|\int_{C} \frac{z^{2}+2+z}{z^{5}+z+1} d z\right| \leq \frac{4 \pi}{15}$.
(b) Let C be a line segment from $z=-1+2 i$ to $z=1$. Check if $\left|\int_{C} \frac{d z}{(z+1)^{4}}\right| \leq \frac{1}{\sqrt{2}}$.

6. Extra Points Problem

Show that if $11 z^{10}+10 i z^{9}+10 i z-11=0$ then $|z|=1$.

