- 1. Evaluate and find all values of the expression
 - (a) $(i-1)^{1+2i}$
 - (b) $\frac{d}{dz}((-5)^z)$ at $z = i\pi$
 - (c) P.V. $(-\sqrt{3} 3i)^3$
- 2. Given $\sin z = \frac{e^{iz} e^{-iz}}{2i}$, $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sinh z = \frac{e^z e^{-z}}{2}$, $\cosh z = \frac{e^z + e^{-z}}{2}$, $\tanh z = \frac{\sinh z}{\cosh z}$, $\operatorname{sech} z = \frac{1}{\cosh z}$ verify that
 - (a) $\cos(2z) = \cos^2 z \sin^2 z$
 - (b) $|\sin z|^2 = \sin^2 x + \sinh^2 y$
 - (c) $\sin(iz) = i\sinh z$
 - (d) $(\tanh z)' = \operatorname{sech}^2 z$
 - (e) $(\sec z)' = \sec z \tan z$
- 3. Consider equation $\tan w = z$.
 - (a) Solve the equation and find w as a function of z
 - (b) Find the derivative $\frac{d}{dz}w(z)$ in the simplest algebraic form.
- 4. Find derivative w'(t) of the complex valued function w w.r.t. real variable t.
 - (a) $w(t) = \sinh^2(\tan(3t) it^3)$
 - (b) $w(t) = (\sec t + i \operatorname{sech} t)^{n^2}, n = 1, 2, 3...$
- 5. (a) Evaluate integral $\int_0^{\pi} e^{(a+ib)t} dt$, where a, b are real numbers and t is real variable.
 - (b) Use result from (a) to find $\int_0^{\pi} e^{at} \cos nt$, where a is real and n is a natural number.
 - (c) Confirm your result in (b) using integration by parts.
- 6. Envaluate

(a)
$$\int_{1}^{\infty} \frac{(t+i)^3}{t^{9/2}} dt$$

(b)
$$\int_0^\infty \left(\frac{1+i}{1+t}\right)^2 dt$$

(c)
$$\int_{-\infty}^{\infty} \frac{2}{1+t^2} + \frac{2it}{1+t^6} dt$$

7. Extra Points Problem Find simple algebraic condition for real numbers k such that the principal value of the expression $(ik)^{ik}$ is real? Give few (approximate) numerical values of such numbers k.