Math 3210
Assignment \#3
Definition 1 Complex Derivative.

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}, \quad z \in C .
$$

Definition 2 Continuity of complex function at point z_{0}.

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

1. Show that $\lim _{z \rightarrow 0}(z / \bar{z})^{2}$ does not exist by comparing limits along different directions towards the origin in the complex plane.
2. Show by definitions that $f(z)=\operatorname{Re}(z)$ is a continuous but not differentiable function at any point z in the complex plane.
3. Let $f(z)=3|z|^{2}+5 z-6$. Find using the definition $f^{\prime}(0)$. Does the derivative exist at any other point besides the origin?
4. Rewrite the limit in an equivalent form avoiding ∞ 's. Explain why the statement is true.
(a) $\lim _{z \rightarrow \infty} \frac{2 z^{2}}{(3 z+1)^{2}}=2 / 9$; (b) $\lim _{z \rightarrow \infty} \frac{(2 z+1)^{3}}{(1+100 z)}=\infty$;
5. Find complex derivative using differentiation rules (a) $z^{5}\left(-i z^{4}-2\right)^{7} ;\left(\right.$ b) $\left(\frac{z^{2}-2 i}{z^{3}+10}\right)^{3}$
6. Let $f(z)=u(r, \theta)+i v(r, \theta)$ be analytic. Derive formula

$$
f^{\prime}(z)=-i\left(u_{\theta}^{\prime}+i v_{\theta}^{\prime}\right) / z
$$

from the formula $f^{\prime}(z)=e^{-i \theta}\left(u_{r}^{\prime}+i v_{r}^{\prime}\right)$ using Cauchy-Riemann equations in polar form.
7. Use Cauchy-Riemann equation in the appropriate form to determine where in the complex plane the following function is differentiable. Find the derivative if it exists.
(a) $f(z)=(2 \bar{z}-1)^{2}$;
(b) $f(z)=i \operatorname{Re}(z)-\operatorname{Im}(z)$;
(c) $f(z)=z^{-2}, z \neq 0$; (d) $e^{x} e^{-i y}$;
(e) $e^{-\theta}(\cos (\ln r)+i \sin (\ln r))$; (f) $r^{2} \sin 2 \theta-i r^{2} \cos 2 \theta$; (g) $\bar{z}^{2}-z^{2}$.
8. Extra Points Problem Let $f^{\prime}(0)=1$ and $f(0)=1$. Prove using the definitions that
(a) $f(z)$ is continuous at $z=0$; (b) there exists $r>0$ such that $f(z) \neq 0$ for $|z|<r$.
9. Extra Points Problem What is the flaw in the following argument?

$$
e^{i \theta}=\left(e^{i \theta}\right)^{2 \pi / 2 \pi}=\left(e^{2 \pi i}\right)^{\theta / 2 \pi}=1^{\theta / 2 \pi}=1
$$

