Math 3210

Due Tue Oct 6

Assignment #3

Definition 1 Complex Derivative.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}, \quad z \in C.$$

Definition 2 Continuity of complex function at point z_0 .

$$\lim_{z \to z_0} f(z) = f(z_0).$$

- 1. Show that $\lim_{z\to 0} (z/\bar{z})^2$ does not exist by comparing limits along different directions towards the origin in the complex plane.
- 2. Show by definitions that f(z) = Re(z) is a continuous but not differentiable function at any point z in the complex plane.
- 3. Let $f(z) = 3|z|^2 + 5z 6$. Find using the definition f'(0). Does the derivative exist at any other point besides the origin?
- 4. Rewrite the limit in an equivalent form avoiding ∞ 's. Explain why the statement is true. (a) $\lim_{z\to\infty} \frac{2z^2}{(3z+1)^2} = 2/9$; (b) $\lim_{z\to\infty} \frac{(2z+1)^3}{(1+100z)} = \infty$;

5. Find complex derivative using differentiation rules (a) $z^5(-iz^4-2)^7$; (b) $\left(\frac{z^2-2i}{z^3+10}\right)^3$

6. Let $f(z) = u(r, \theta) + iv(r, \theta)$ be analytic. Derive formula

$$f'(z) = -i(u'_{\theta} + iv'_{\theta})/z$$

from the formula $f'(z) = e^{-i\theta}(u'_r + iv'_r)$ using Cauchy-Riemann equations in polar form.

7. Use Cauchy-Riemann equation in the appropriate form to determine where in the complex plane the following function is differentiable. Find the derivative if it exists.

(a)
$$f(z) = (2\bar{z} - 1)^2$$
; (b) $f(z) = iRe(z) - Im(z)$; (c) $f(z) = z^{-2}, z \neq 0$; (d) $e^x e^{-iy}$;

(e)
$$e^{-\theta}(\cos(\ln r) + i\sin(\ln r))$$
; (f) $r^2 \sin 2\theta - ir^2 \cos 2\theta$; (g) $\bar{z}^2 - z^2$.

- 8. Extra Points Problem Let f'(0) = 1 and f(0) = 1. Prove using the definitions that (a) f(z) is continuous at z = 0; (b) there exists r > 0 such that $f(z) \neq 0$ for |z| < r.
- 9. Extra Points Problem What is the flaw in the following argument?

$$e^{i\theta} = \left(e^{i\theta}\right)^{2\pi/2\pi} = \left(e^{2\pi i}\right)^{\theta/2\pi} = 1^{\theta/2\pi} = 1.$$