Answers

- 1. Give an example (with explanaition) of
 - (a) simple closed non-differentiable curve;

A triange or a square: no self-intersections, closed, not differentible at the corners.

(b) differentiable but not smooth arc;

An arc given by $z(t) = 1 + i \sin t$, $0 \le t \le \pi$. Then $z'(\pi/2) = 0$ so is not smooth.

(c) Jordan curve.

This is a simple closed curve, for example a circle.

2. Let

$$z_1(t) = R_0 e^{it}, \quad z_2(s) = \sqrt{R_0^2 - s^2} + is, \quad z_3(q) = q + i\sqrt{R_0^2 - q^2}$$

where $R_0 > 0$ is a constant and t, s, q are real parameters. When the interval for t is given, $z_1(t)$ describes a curve in the complex plane. Give an alternative description of the same curve in terms of either $z_2(s)$ or $z_3(q)$ (or both) and find corresponding interval(s) for s and q if

(a) $\pi/4 < t < 2\pi/3$.

An alternative description is $z_3(-q)$, where $q \in [-R_0/\sqrt{2}, R_0/2]$.

(b) $-\pi < t < -\pi/3$

An alternative description is $\bar{z}_3(q)$, where $q \in [-R_0, R_0/2]$.

- (c) $3\pi/4 < t < 5\pi/4$ An alternative description is $-z_2(s)$, where $s \in [-R_0/\sqrt{2}, R_0/\sqrt{2}]$.
- (d) $-\pi/2 < t < \pi$ An alternative description is the union of $z_2(s)$, where $s \in [-R_0, R_0]$ and $z_3(-q)$, where $q \in [0, R_0]$.

3. Evaluate contour integral along curve $C = \{z(t), a \leq t \leq b\}.$

- (a) $\int_C z^{-2} dz, \ z(t) = 5e^{2it}, \ 0 \le t \le \pi/4.$ Answer: (1+i)/5.
- (b) $\int_C \bar{z}^2 dz, \ z(t) = e^{-it}, \ 0 \le t \le 2\pi.$ Answer: 0.
- (c) $\int_C \bar{z}^{-n} dz$, $z(t) = e^{ikt}$, $0 \le t \le 2\pi/k$, where *n* and $k \ne 0$ are integers. Answer: 0 for all $n \ne -1$ and $2\pi i$ for n = -1.
- (d) $\int_C \frac{3+z}{z} dz$, $z(t) = \sqrt{9-t^2} + it$, $0 \le t \le 3$ Here you may want to change the contour description to $z(s) = 3e^{is}$, where $0 \le s \le \pi/2$.

Then contour integration gives $3i(\pi + 2)/2 - 3$.

(e) $\int 2xy + i(y^2 - x^2)dz$ with respect to triangular contour with vertices at points $z = \pm i$ and z = -1.

Integrals with respect to each side of the triangle are : -3/2, (1 + i)/3 and (1 - i)/3, which sums up to zero.

The answer also follows from the Cauchy-Goursat theorem because the integrant is iz^2 which is analytic.

- 4. Do the following without evaluating the integral.
 - (a) Let $C = \{2e^{it}, 0 \le t \le \pi/2\}$. Show that $|\int_C (z^4 1)^{-1} dz| \le \pi/7$. Here $L = \pi$ and $M = (2^4 - 1)^{-1} = 15$. Thus $|\int_C (z^4 - 1)^{-1} dz| \le \pi/15 < \pi/7$.
 - (b) Let C be a line segment from z = -i to z = 1. Show that $|\int_C z^{-6} dz| \le 8\sqrt{2}$ Note that point $(1/\sqrt{2}, -1/\sqrt{2})$ is the closest point to the origin among all point from the segment of integration. Thus the max value of the integrant is reached there and is M = 8. The length $L = \sqrt{2}$. This gives the estimate.
 - (c) Let C be a circle of radius R. Show that

$$\left|\int_{C} \frac{\log z}{z^4} \, dz\right| \le 2\pi \frac{\ln R + \pi}{R^3}$$

By definition, $Log z = \ln |z| + i\Theta$, $-\pi < \Theta \le \pi$. Thus $M = \frac{\ln R + \pi}{R^4}$ and $L = 2\pi R$. This gives the estimate.

5. Extra Points Problem Show that condition

$$\frac{\partial f(z,\bar{z})}{\partial \bar{z}} = 0$$

is equivalent to the Cauchy-Riemann equations.

Solution. Let f(x,y) = u(x,y) + iv(x,y). Using $x = (z + \overline{z})/2$ and $y = i(\overline{z} - z)/2$ and the chain rule we obtain

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(u_x + iv_x) + \frac{i}{2}(u_y + iv_y) = \frac{u_x - v_y}{2} + i\frac{v_x + u_y}{2}.$$

Recall the Cauchy-Riemann condition $u_x = v_y$ and $v_x = -u_y$, so it gives desired statement.