1. Give an example (with explanaition) of
(a) simple closed non-differentiable curve;
(b) differentiable but not smooth arc;
(c) Jordan curve.
2. Let

$$
z_{1}(t)=R_{0} e^{i t}, \quad z_{2}(s)=\sqrt{R_{0}^{2}-s^{2}}+i s, \quad z_{3}(q)=q+i \sqrt{R_{0}^{2}-q^{2}}
$$

where $R_{0}>0$ is a constant and t, s, q are real parameters. When the interval for t is given, $z_{1}(t)$ describes a curve in the complex plane. Give an alternative description of the same curve in terms of either $z_{2}(s)$ or $z_{3}(q)$ (or both) and find corresponding interval(s) for s and q if
(a) $\pi / 4<t<2 \pi / 3$
(b) $-\pi<t<-\pi / 3$
(c) $3 \pi / 4<t<5 \pi / 4$
(d) $-\pi / 2<t<\pi$
3. Evaluate contour integral along curve $C=\{z(t), a \leq t \leq b\}$.
(a) $\int_{C} z^{-2} d z, z(t)=5 e^{2 i t}, 0 \leq t \leq \pi / 4$
(b) $\int_{C} \bar{z}^{2} d z, z(t)=e^{-i t}, 0 \leq t \leq 2 \pi$
(c) $\int_{C} \bar{z}^{-n} d z, z(t)=e^{i k t}, 0 \leq t \leq 2 \pi / k$, where n and $k \neq 0$ are integers.
(d) $\int_{C} \frac{3+z}{z} d z, z(t)=\sqrt{9-t^{2}}+i t, 0 \leq t \leq 3$
(e) $\int 2 x y+i\left(y^{2}-x^{2}\right) d z$ with respect to triangular contour with vertices at points $z= \pm i$ and $z=-1$.
4. Do the following without evaluating the integral.
(a) Let $C=\left\{2 e^{i t}, 0 \leq t \leq \pi / 2\right\}$. Show that $\left|\int_{C}\left(z^{4}-1\right)^{-1} d z\right| \leq \pi / 7$.
(b) Let C be a line segment from $z=-i$ to $z=1$. Show that $\left|\int_{C} z^{-6} d z\right| \leq 8 \sqrt{2}$
(c) Let C be a circle of radius R. Show that

$$
\left|\int_{C} \frac{\log z}{z^{4}} d z\right|<2 \pi \frac{\ln R+\pi}{R^{3}}
$$

5. Extra Points Problem Show that condition

$$
\frac{\partial f(z, \bar{z})}{\partial \bar{z}}=0
$$

is equivalent to the Cauchy-Riemann equations.

