1. Find all values and the principal value of the complex expression
(a) $(-2)^{2 / \pi}$
(b) $(1+i)^{i-1}$
(c) $(1-i \sqrt{3})^{5 / 2}$
(d) This little poem is dedicated to the days when all formulae were written in words:
i to the i times i to the i
times e to the π - please simplify.
2. Given $\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \cos z=\frac{e^{i z}+e^{-i z}}{2}, \sinh z=\frac{e^{z}-e^{-z}}{2}, \cosh z=\frac{e^{z}+e^{-z}}{2} \tanh z=\frac{\sinh z}{\cosh z}$, verify that
(a) $\sin (z+w)=\sin z \cos w+\cos z \sin w$
(b) $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$
(c) $\sin (i z)=i \sinh z$
(d) $(\tanh z)^{\prime}=\operatorname{sech}^{2} z$
(e) $(\tanh z)^{\prime}=-\operatorname{sech} z \tanh z$
3. Show that $2 \tanh ^{-1}\left(e^{i \theta}\right)=\log (i \cot (\theta / 2))$.
4. Find derivative $w^{\prime}(t)$ of the complex valued function w w.r.t. real variable t.
(a) $w(t)=\cosh \left(\sin (3 t)+i t^{2}\right)$
(b) $w(t)=(u(t)+i v(t))^{n}, n=1,2,3 \ldots$
5. (a) Evaluate integral $\int_{0}^{\pi} e^{(a+i b) t} d t$, where a, b are real numbers and t is real variable.
(b) Use result from (a) to find $\int_{0}^{\pi} e^{a t} \sin n t$, where a is real and n is a natural number.
(c) Confirm your result in (b) using integration by parts.
6. Envaluate improper integral
(a) $\int_{1}^{\infty} \frac{(t+2 i)^{2}}{t^{4}} d t$
(b) $\int_{0}^{\infty} \frac{200+300 i}{\sqrt{t}(1+t)} d t$
(c) $\int_{-\infty}^{\infty} \frac{t}{1+t^{4}}+\frac{i}{1+t^{2}} d t$
7. Extra Points Problem Find simple algebraic condition for real numbers k such that the principal value of the expression $(i k)^{i k}$ is real? Give few (approximate) numerical values of such numbers k.
